
Helping People Choose Careers in the Age of AI

Jennifer L. Steele, steele@american.edu

American University

February 2026

Jennifer Steele (American University) Careers in the Age of AI Feb. 2026 1 / 35



Outline

1 Motivation and Objective

2 Analytic Strategy

3 Results: Generalized Work Activity Automation Exposure

4 Results: Occupational Automation Exposure

5 Summary and Implications for Teaching and Learning

Jennifer Steele (American University) Careers in the Age of AI Feb. 2026 2 / 35



Outline

1 Motivation and Objective

2 Analytic Strategy

3 Results: Generalized Work Activity Automation Exposure

4 Results: Occupational Automation Exposure

5 Summary and Implications for Teaching and Learning

Jennifer Steele (American University) Careers in the Age of AI Feb. 2026 3 / 35



"The Turing Trap" versus "Machines of Loving Grace"

"The distributive effects of AI depend on whether it is primarily used to augment human
labor or automate and replace it."
–Erik Brynjolfsson, 2022. The Turing trap. Daedalus, 151(2).

"We simply need to break the link between the generation of economic value and
self-worth and meaning."
–Dario Amodei, 2026, Jan. The adolescence of technology, essay citing Almodei’s 2024
essay, "Machines of loving grace."
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Indeed, the economic payoff of work varies by interest
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Current impact of AI on jobs is uncertain

Anthropic: 36% of occupations are using AI for at least a quarter of their tasks
(Handa et al., 2025)
Since 2023, freelance job postings in writing and programming (not other fields)
dropped 21% (Demirci et al., 2025)
Since 2023, employment is falling fastest (up to 13%) for early-to-mid-career workers
in careers with highest exposure to automation tasks, not augmentation tasks
(Brynjolfsson et al., 2025)
Automation tasks, comprising 56% of work ChatGPT queries, 40% of Claude queries,
and 70% of Claude API queries, are defined as directive tasks and feedback loops.
Augmentation tasks involve iteration, validation, learning, or other queries (Appel
et al., 2025; Handa et al., 2025).
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What will jobs look like in the age of AI?

1 Following Autor et al. (2003) and others, I treat 923 occupations (O*NET SOC
Codes) as baskets of about 19,000 tasks, 2,000 Detailed Work Activities, and 41
Generalized Work Activities (GWAs).

2 For GWAs-level aggregates, I weight automation exposure scores by the relative
importance of the GWA to the job.

3 I examine economic returns to GWA categories.
4 I examine how my own and 5 other sets of estimates differ by estimation method, job

education level, salary, complexity, interest category, and job sector.
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My analysis compares diverse automation prediction models

Table 1: Models Under Consideration

Article How Measure
Steele (2026) Anthropic & GPT queries % of job tasks automatable
Eloundou et al. (2024) GPT & human raters % of job LLM+ can do twice as fast
Felten et al. (2021) Crowd-sourced Job ability automation suitability

Webb (2020) Text-mining for semantic
overlap AI patent filings & job descriptions

Brynjolfsson & Mitchell
(2017) Crowd-sourced w/ rubric Task suitability for machine learning

(SML)

Frey & Osborne (2017) Human raters Abilities that are not social, creative, or
dexterous
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My empirical measure employs 2025 Claude and OpenAI usage

Using query data from 2025 for Appel et al. (2025) and Chatterji et al. (2025), I define the
following:

GWA Exposure
=80 if in the top decile of Claude, Claude API, or OpenAI queries (>7% of queries)
=45 if 50th to 90th percentiles (1-7% of queries)
=10 if below 50th percentile (<1% of queries)
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Robustness checks examined

1 Divide by 2 if more than 60% of Claude or 30% of Claude API queries are
augmented instead of automated

2 Augmentation exposure: 65, 45, 25, 5 for augmentation percentiles of 90+, 75-90,
50-75, <50

3 Automation exposure: 33, 23, 13, 3 for automation percentiles of 90+, 75-90, 50-75,
<50

4 Aggregate 19k task percents to job level, convert to centiles, average Claude and
ChatGPT

5 Theory-based exposure estimates at GWA level, adapted from Frey (2017)
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Returns to GWA category employ its relative importance across jobs

medsalj = α+ βrelimportanceg j + ϵj where:
relimportanceg j is relative importance (0-100) of activity category g in occupation j
medsalj is median salary of occupation j in 2022$ in 2022
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Tasks vary widely in LLM use patterns
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Generalized Work Activity Exposure Measures Vary
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GWA Salary Differentials Positively Linked to Automation Exposure

Regressing salary differentials on exposure, standardized betas: 0.23, 0.41, & 0.03.
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GWA augmentation relatively high in coaching, teaching, advising
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Model predictions are scaled linearly from 0 to 100
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Models yield heterogeneous signals
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Models vary in predictions by occupational level
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Models vary in predictions by salary
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Job category exposure by model

Table 2: Which job categories show greatest exposure, by model?

Model JobZone RIASEC Sector
Steele (Queries) Adv (41.6) Investigat (41.6) Compu/Math (43.3) Legal (43.3)
Eloundou (GPT) Bach (45.9) Conventional (53) Office (60.7) Compu/Math (57.6)
Felten (Crowd) Adv (86.4) Investigat (85.7) Compu/Math (97.6) Legal (96.5)
Webb (Patents) Bach (33.4) Investigat (38.8) Compu/Math (45.3) Sciences (45.1)
Brynjolf (Crowd) Bach (61.6) Conventional (66) Office (72) Sales (67.9)
Frey (Theory) <HS (82.6) Conventional (67) Office (84.6) Manufacturing (82.5)

Jennifer Steele (American University) Careers in the Age of AI Feb. 2026 23 / 35



Most-exposed jobs by model

Table 3: Which jobs show the highest automation exposure, by model?

Steele (Queries) Eloundou (GPT) Felten (Crowd)
Environmental Economist Telemarketer Genetic Counselor
Mathematician Credit Authorizer Financial Examiner

Webb (Patents) Brynjolf (Crowd) Frey (Theory)
Wastewater Treatment Mechanical Drafter Telemarketer
Civil Engineer Tech Mortician Insurance Underwriter
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Chatbot usage shows high scientific and social exposure
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GPT-based automation predictions show high conventional exposure
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Patents show high exposure for physical and scientific jobs
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Machine learning estimates show less exposure of high-stakes work
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Summary

1 AI automation exposure predictions vary by researcher methods
2 Empirically, people use chatbots to code, write, and explain
3 Patent-based predictions favor robotics and natural sciences
4 Older predictions may under-emphasize scientific and creative exposure
5 Chatbot use for social tasks is more augmented than automated
6 Entrepreneurial and social/helping jobs are less exposed in most models
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Is it reasonable to promote augmentation vs. automation?

Table 4: AI as Human Substitute versus Complement

Automation Augmentation
Automatic Defibrillation Vital Sign Monitor
Write Your Lit Review Find and Synthesize New Sources

Build Your App Expand Your Coding Skills
Grade Student Essays Generate Rubrics and Grading Templates

Do Your Algebra Homework Explain Key Algebra Concepts
Conduct Your Data Analyses Provide Summary Stats & Suggestions
Establish Strategic Priorities Suggest Priorities to Consider
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What may matter for teaching and learning

Hands-on practice so students build expertise
Helping students learn with these tools (augmented learning)
Modeling ethical use:

Learning, not just submitting
Exploring, not just writing
Validating, not just building
Others...
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