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Abstract 

Analyzing U.S. Department of Labor O*NET data on the task composition of 867 jobs, I estimate the 

fraction of each job that may be vulnerable to automation with artificial intelligence (AI)-enabled tools in 

the next generation. I characterize 41 occupational tasks by known automation bottlenecks, including 

theory of mind, flexible dexterity, and vision/strategy, which are analogous to those used by Frey and 

Osborne, drawing on earlier work by Autor, Levy, and Murnane (2003). I test two assumptions about 

bottleneck severity, one with greater protection for manual tasks. In aggregating tasks to the occupational 

level, I weight them by their relative importance to the job and scale them by their level of sophistication, 

such that more sophisticated tasks are harder to automate. After examining the distribution of job 

automation risk by education level, interest category, and sector, I estimate three scenarios for how 

automation might affect productivity. I show that salary inequality rises in even the most protective 

scenarios, but especially when top-quartile workers capture most of the automation benefits in their 

sectors. 
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Introduction 

Educational institutions have always had to prepare students for an economically changing 

landscape. Robotics and digital automation have been reshaping the U.S. economy since at least the 

1980s, as assembly line, secretarial, and other routine work has shifted from humans to machines (Autor, 

2014). But institutions of higher education may have felt insulated from these changes, which by default 

were boosting the value of advanced skills and a college degree (Deming, 2023; Goldin & Katz, 2008). 

By hollowing out U.S. manufacturing jobs, which previously had offered a path to the middle 

class for non-college-educated workers, the first four decades of computer-based automation contributed 

to widening income inequality and to economic and even political polarization between U.S. workers with 

and without college degrees (Carnevale & Strohl, 2010; Piketty, 2018).  

But generative AI is different. Multimodal large language models (LLMs) like OpenAI’s GPT and 

Anthropic’s Claude use natural language programming to generate new text, images, and video in ways 

that closely mimic human-created content. Trained on terabytes of human-generated output, these 

technologies rapidly generate text or pictures using many layers of predictive analytics of what should be 

written or drawn next, word by word and pixel by pixel, in light of the context of adjacent words or pixels 

(Lee & Trott, 2023). Enabled by massive computing power, they can generate creations in a matter of 

seconds that might demand many hours of work even for human experts. However, the models operate at 

the level of item prediction rather than via conceptual logic. For this reason, they are prone to many 

limitations, including reporting of fully made-up information (“hallucinations”), inability to parse logical 

arguments or structures, limitations in performing math, and limited ability to reason through complex 

logic problems (Dziri et al., 2022; Ji et al., 2022; Lohr, 2024). However, given attention that researchers 

are devoting to these problems, the capabilities of generative AI will surely increase. 

In comparison to many technological innovations, generative AI has been rapidly embraced by 

the public. ChatGPT 3.5 was released as recently as November of 2022, catapulting generative AI into 

global awareness. According to an August 2024 survey by Bick, Blandin, & Deming (2024), about 39.5% 
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of U.S. adults aged 65 or younger reported already having used AI. About 28% had used it for work, 

including more than a fifth of blue-collar workers, and 33% had used it outside of work. Though 

company’s adoption has been slower and more heterogeneous (McElheran et al., 2024), an increasing 

number are finding ways to increase revenue through generative AI (Chui et al., 2021). One experiment 

with 5000 call center workers given staggered implementation of customer support scripts found that 

problem resolutions per hour rose 14 percent, with most gains concentrated among new and less-skilled 

workers (Brynjolfsson et al., 2023).  

So the question is not whether generative AI will begin to automate people’s work, but how such 

automation will affect their jobs, enhancing workers’ capabilities or supplanting them. On one hand is 

evidence like that from the call centers, in which AI complements and enhances workers’ productivity, 

with the least-skilled workers yielding the greatest increases in value. This scenario supports David 

Autor’s (2024) view that AI may shrink earnings inequality, given its applications to white-collar and 

creative work and its potential to boost the skills of lower-performing workers, as in the call center study. 

On the other hand, Daron Acemoglu and colleagues (2022) show that firms exposed to AI 

increase hiring in AI subfields but scale back otherwise. This finding reinforces the longstanding concern 

that AI will eventually supplant workers by substituting for their work if firms are not incentivized to 

protect workers and help them use AI as a complement (Acemoglu & Johnson, 2023). In a study of more 

than 1000 scientists, Toner-Rodgers (2024) showed that AI access in a chemical research lab fostered a 

44% gain in material discoveries, a 39% gain in patent filings, and a 17% gain in product development. 

However, contrary to the call center study by Brynjolfsson et al. (2023), Toner-Rodgers found that the 

gains in innovation were driven by the most experienced and high-producing scientists who were able to 

make efficient use of AI-generated suggestions. It therefore suggests that the ability to use AI as a 

complement rather than substitute for human-generated tasks may depend on both the complexity of the 

task in question and the skill level of the worker. 

In this paper, I undertake analyses of Department of Labor O*NET data under six plausible 

scenarios for automation risk and salary redistribution. My aim is to gauge possible effects of each 
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scenario on the inequality of automation vulnerability and salaries. I use importance and level data on 41 

occupational tasks, which I characterize as automation bottlenecks if they depend on theory of mind, 

flexible dexterity, or vision/strategy. These are analogous to bottlenecks used by Frey and Osborne 

(2017), drawing on earlier work by Autor, Levy, and Murnane (2003).   

I test two assumptions about these bottlenecks, the second of which is more protective of manual 

labor. Then I aggregate them to the occupational level, weighting by their relative importance to the job 

and scaling by their level of sophistication, such that more sophisticated tasks are harder to automate. I 

describe automation risks by education level, interest category, and sector, and I estimate three scenarios 

for how this might affect productivity as proxied by salary. I find that salary inequality is sensitive to how 

lower-skilled workers are able to capitalize their own skill automation. It is much less sensitive to 

considerations about which particular tasks represent smaller or larger barriers to automation as 

generative AI technology gradually improves.  

 

Predicting Automation Risk Across Jobs  

The longstanding question of which jobs are vulnerable to automation has recently been 

addressed in separate papers by Frey and Osborne (2017) and Felten, Raj, and Seamans (2021), both of 

whom use Occupational Information Network (O*NET) data from the U.S. Department of Labor. Frey 

and Osborne (2017) score job abilities based on automation bottlenecks: social intelligence; complex 

perception and manipulation; creative intelligence. They use data on the prevalence of nine automation 

technologies to calculate the probability that a given job can be wholly automated by AI or not. A 

limitation is that their model does not incorporate the most recent gains in AI creativity and treats jobs 

automation as dichotomous.  

Felten, Raj, & Seamans (2021) use O*NET ability importance and level scores, combined with 

crowd-sourced views on whether particular abilities are exposed to AI, to predict AI Occupational 

Exposure (AIOE) and Industry Exposure (AIIE). A strength of their model is that they treat each job as a 

basket of characteristics—in this case abilities—that vary in whether AI can emulate them. A limitation is 
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that their focus on exposure rather than vulnerability does not distinguish between work that might be 

complemented versus substituted by AI and does not consider physical types of automation, such as 

robotics-enabled surgery or self-driving cars.  Their crowd-sourced approach to gauging AI exposure is 

admirably data-driven but atheoretical, which leads to high exposure scores for jobs like teaching and 

mental health counseling and social services that in my schema, as well as that of Frey and Osborne 

(2017) and Autor, Levy, and Murnane (2003) seem less vulnerable to automation because of their 

interpersonal element.  

I construct a hybrid approach in which, like Felten, Raj, and Seamans (2021), I treat each job as a 

weighted basket of components—in this case, work activities or tasks. Like Frey and Osborne (2017). I 

theorize about jobs’ degree of automation risk as a function of known social, physical, and motivational 

bottlenecks. My approach differs from that of Felten, Raj, & Seamans (2021) in that I use a theoretically 

guided approach to quantifying task automation vulnerability. I depart from Frey and Osborne (2017) in 

that I characterize a job’s automation risk flexibly, based on automatability of its component activities, 

and I account for the creative capacity of the new generation of AI, defined by generative large language 

models. In this way, my estimates anticipate the effects of automation in domains that are not defined by 

social perspective taking, flexible manual work, and motivated vision and strategy.  

 

Empirical Approach 

I employ occupational descriptors from the U.S. Department of Labor’s Occupational 

Information Network (O*NET), including importance and level scores for 41 work activities across 867 

jobs. To capture the level and importance of each of 41 work activities (updated in 2023), I use 8-digit job 

codes from the Bureau of Labor Statistics’ 2018 Standard Occupational Classification (SOC) system. To 

measure the number of workers in each occupation and their median salaries in 2022, I use 749 unique 6-

digit BLS SOC codes, which is the precision level at which occupational size and salary data are 

available. 
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Activity rating 

For each of the 41 job activities in the O*NET content model, I calculate a score based on three 

dimensions adapted from Frey and Osborne (2017) and Autor, Levy, and Murnane (2003). Specifically, I 

rate each task dichotomously on three dimensions: 

Theory of Mind: Does the activity ask the worker to theorize about or anticipate what other 

people are thinking and feeling? Examples would include teaching, mentoring, nursing, and 

selling. 

Flexible Dexterity: Does the activity ask the worker to perform manual tasks that are intricate 

and unpredictable? Examples would include plumbing, HVAC installation and repair, painting a 

house, replacing pipes or electrical wiring. 

Vision and Strategy: Does the activity ask the worker to create intrinsic goals and objectives, or 

a plan for achieving them? Examples would include setting an organizational vision, creating a 

marketing plan, deciding on product launches and phase outs. 

 

Interest category distribution 

Because I am concerned with what secondary and postsecondary educators communicate to 

students about automation risk, I also examine the distribution of automation risk and salary changes by 

six categories of career interest. 

The U.S. Department of Labor bases its career recommendations tools, such as CareerOneStop 

and My Next Move, on a career interest model known by the acronym RIASEC (Holland, 1959). The 

acronym stands for six categories of career interest: 

Realistic: practical and hands-on, including physical, mechanical, natural, and outdoor work 

Investigative: analytic, scientific, logical, and precision-oriented 

Artistic: creative and expressive with images, words, music, objects, food, or other media 

Social: understanding, helping, supporting, and engaging with people 

Enterprising: involving business, strategy, leadership, negotiation, and competition 
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Conventional: using systems and standards to manage information, data, and materials 

 O*NET’s RIASEC rates jobs based on the RIASEC category with which they have the highest 

correspondence, which allows me to examine the distribution of projected automation risk according to 

the RIASEC category most associated with each job. In Appendix A, I provide bar graphs showing the 

2022 prevalence and salary distribution of jobs in each RIASEC category, based on 749 six-digit SOC 

codes.  

 

Calculating job automation risk scenarios 

Because technology is changing rapidly, assumptions about which job tasks can be automated are 

being constantly challenged. In 2017, Frey and Osborne’s analysis of job automation risk assumed that 

jobs requiring “complex perception” and “creative intelligence” would remain difficult to automate within 

the next twenty years (p. 27). This assumption has been challenged by recent progress in self-driving 

technology and generative LLMs. 

 Even so, it remains true that not all job tasks can be easily automated. To help firms, educators, 

and workers cultivate skills for which demand is likely to persist, we need a framework for predicting 

generational automation risk in the age of generative AI.  

 In this paper, I combine insights from two different approaches to automation projections. Frey 

and Osborne (2017) adapt the framework from Autor, Levy, & Murnane (2003), in which difficulty of 

automation is determined by how non-routine a job is and by how cognitively demanding it is. Frey and 

Osborne’s framework does recognize the pattern-recognition capabilities of AI, and it rates jobs according 

to three automation bottlenecks: perception and manipulation tasks, creative intelligence tasks, and social 

intelligence tasks. The authors use a Gaussian process, analogous to logit, to classify jobs’ probability of 

full automation based on levels of nine U.S. Department of Labor O*NET ability variables pertaining to 

these three bottlenecks. I extend their approach by focusing on both level and importance scores for all 41 

O*NET job activities (in lieu of abilities), and by updating the three bottlenecks to consider theoretical 

lessons that have emerged from the new generation of generative AI.  
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 The other automation projection approach I build from is that of Felten, Raj, & Seamans (2021), 

who use O*NET job abilities to gauge likelihood of AI occupational exposure, which they call AIOE, 

scaling by the importance and prevalence of each ability in a particular job. Rather than adapting the idea 

of bottlenecks, they use crowd-sourced survey data from the public to gauge the AI exposure level of 

occupations, industries, and geographic regions. Felten et al. (2021) focus exposure at the level of 52 

O*NET abilities (e.g., Fluency of Ideas, Hearing Sensitivity, Stamina), weighted by job importance and 

prevalence. They anticipate higher AI exposure for skills that are more cognitive, but my approach differs 

in that I adjust for importance-weighted levels of task sophistication using O*NET activities. I focus on 

automation risk for activities instead of abilities because activities are the tasks that comprise the job, 

making them easier to characterize in terms of automation bottlenecks. The challenge of the AIOE 

approach is that many of the AI exposure ratings seem implausible, with human services professions like 

teachers and mental health counselors, and complex strategic jobs like chief executives, physicists, and 

astronomers having among the highest ratings. This makes sense given that all these fields may use AI as 

complements for their work. On the other hand, a recent, national survey by Bick, Blandin, and Deming 

(2024) suggests that 39% of U.S. workers, including 22% of blue collar workers, already report using AI 

applications at work. 

 My approach rates 41 O*NET work activities by their automation bottlenecks and scales these 

ratings by their relative importance and level of sophistication in each job. However, my manner of 

classifying the automation bottlenecks in various jobs is based not on field-specific technological 

capabilities, as in Frey and Osborne (2017) nor on crowd-sourced views of the exposure of job abilities to 

AI, as in Felton, Raj, and Seamans (2021). Rather, it is based on a theoretical understanding, illuminated 

by generative AI and previous automation waves, of the human skills that remain hard to automate across 

jobs. It is also based on the notion that whether automation serves as a complement or substitute to a 

given job depends greatly on the level of sophistication at which the tasks vulnerable to automation are 

being performed. The ability to set and direct tasks toward goals (guided by vision/strategy) and with 

human rationales (informed by theory of mind) is what makes automation a complement to rather than a 
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substitute for the task. Thus, by scaling automation risk by task level, I obtain a nuanced calibration of a 

job’s likely automation risk. This also allows me to project salary distributional effects under scenarios 

that facilitate higher and lower degrees of automation complementarity for lower-skilled workers. This 

also lets me examine how jobs situated in RIASEC interest categories are differentially affected by 

automation risk, and how this affects their projected earning distributions. 

 I first calculate two scenarios for task automation risk, which I then weight by tasks’ relative 

importance and level when scaling up to the level of jobs. 

   

Scenario A 

For my first measure of task safety from automation, I give equal weight to each of three 

plausible automation bottlenecks. For each of 41 work activities, as I assign a dichotomous 1/0 value for 

whether the activity requires some degree of theory of mind (tomi), flexible dexterity (fdex), and 

vision/strategy (visi). The sum of these dichotomous variables divided by 3 constitutes task_safe_at, 

which ranges from 0 to 1, with possible values of 0, 0.33, 0.66, and 1.0, as in equation (1). Subscript t 

indexes work activities, also known as tasks: 

task_safe_at=(tomit+fdext+visit)/3    (1) 

For example, a task that has only one of these elements is considered 33% safe and 66% potentially 

automatable, and a task with all three elements is considered unlikely to be automated.  

 

Scenario B 

As Felten, Raj, and Seamans (2021) have noted, nonroutine physical tasks may face higher 

automation barriers than tasks involving theory of mind or vision/strategy, due to the costs of building 

hardware with sensors and complex moving parts. In addition, the cost of automating any task may be 

nontrivial if it requires workers to learn new skills and techniques. To capture the effects of overall 

automation friction and of the additional difficulty of automating flexible dexterity tasks, I construct an 

alternative measure of task safety, as shown in equation (2): 
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task_safe_bt = 0.2+0.2*tomit+0.4*fdext+0.2*visit (2) 

where overall automation friction is represented by a constant of 0.2, and where the bottleneck weight for 

flexible dexterity, at 0.4, is twice that of theory of mind or vision/strategy. 

 

Job automation risk 

For each scenario, A and B, I aggregate all 41 values to the job level, j, weighting each task by its 

relative importance. Relative importance is the task’s absolute importance to the job as a percentage of the 

total importance of all tasks for that job. This scaling is necessary because total importance scores across 

all tasks are higher in some jobs than in others. Relative importance of task t to job j is therefore defined 

as the task’s importance score, ranging from 0 to 100, divided by the sum of all importance scores for the 

job, as in (3):  

rel_impjt = (impjt  / Σt=1-41 impjt) *100    (3) 

The resulting variable, rel_impjt, for tasks’ relative importance within a job ranges from 0 to 9.3 with a 

mean of 2.4.  

To estimate the fraction of work in a job that is vulnerable to automation, I separately scale the 

complement of task_safet (scenarios A and B separately) by its relative importance to the job, rel_impjt. I 

scale this by complement of the level of sophistication at which the task t is conducted in job j. Level is 

divided by 100 so that it ranges from 0 to 1. Multiplying a task’s importance-weighted safety score by the 

complement of its level creates a negative, linear relationship between task sophistication and automation 

risk, reflecting the difficulty of automating complex tasks. This important assumption allows automation 

risk to fall as task sophistication rises, independent of the relative importance of each task to a job. 

The level-and-importance-weighted task automation risk would therefore be 0 for a task at the highest 

sophistication level of 1, and it would be 1-task_safe, weighted by importance, for a task that is executed 

at level 0. 
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As shown in equation (4), aggregating these calculations to the job level yields the job’s fractional 

automation risk, jobautj, indicating the fraction of the job that is likely to be vulnerable to automation 

within a generation: 

jobautj = Σt=1-41 {(1-task_safet)*rel_impjt*[1-(task_leveljt/100)]}  (4) 

Similarly, I define the aggregate level at which work is performed in a job as  

joblevelj = Σt=1-41 (rel_impjt  * task_leveljt)    (5) 

The resulting variable, joblevelj, ranges from 27.9 to 74.5, with a mean of 53.2.  

To consider the consequences of job automation risk for worker salaries, we must speculate about 

the extent to which workers will use automation as a complement their work, shifting the demand curve 

upward, versus the extent to which automation will substitute for their labor, shifting downward the 

demand curve for their work. Recall that the story of complementarity is favored by Autor (2024) and 

observed by Chui et al. (2021), whereas Acemoglu and Restrepo (2020) see broad potential for worker 

substitution in the absence of policy interventions.  

 I consider three stylized scenarios for AI complementarity and substitution, as described in Table 

1. Note that whereas jobautj in column 1 refers to the percentage of jobs tasks that can be automated, 

sectauts in column 2 refers to is job automation risk aggregated across all jobs in a SOC major code, or 

sector, of which there are 22 in the O*NET data. I construct sector risk by adding the jobautj values for all 

the distinct jobs in a sector, and dividing by the number of unique jobs in the sector.  

For the median salary of each job, medsalj, I apply the following formula to create three projected 

salaries, projsalcj, where c indexes scenarios 1-3 as described in Table 1, and j indexes jobs. The formula 

for the salary projections is given by: 

projsalcj = medsalj * {1+[k*(aut/100)]}   (6) 

where k is a multiplier described in Table 1, and where aut is the automation risk variable aggregated at 

the job level, as in jobautj, or at sector level s, as in sectauts. 
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Table 1. Three scenarios for salary distribution effects of AI by job level quartile 

Job level 
quartile 

Scenario 1: 
Disproportionate 
benefits based on 
job risk 

Scenario 2: 
Disproportionate 
benefits based on 
sector risk 

Scenario 3: Small 
proportional benefits 
to all 

Top k =  0.2; aut=jobautj k =  0.2; aut=sectauts  
k = 0.05; aut=jobautj Second k =  0.1; aut=jobautj k =  0.1; aut=sectauts 

Third k = ˗0.1; aut=jobautj k = ˗0.1; aut=sectauts 
Lowest k = ˗0.2; aut=jobautj k = ˗0.2; aut=sectauts 

Note: Sectors are defined by SOC major codes 
 

This formula converts automation risk from a percentage to a fraction and scales it by variable k, 

which is set to 10% or 20% in scenarios 1 and 2 and to 5% in scenario 3, based on the assumption that 

only a modest percentage of productivity changes would be absorbed into workers’ market value, with the 

remainder likely going toward profit, adaptation costs, and so forth. In scenarios 1 and 2, this 10-20% of 

task automation is added to workers’ salaries in the top two quartiles of job level, and it is subtracted from 

their salaries in the lower two quartiles.  

Scenario 2 differs from scenario 1 in that it is not the job’s automation risk that is capitalized into 

salaries, but that of the entire sector. Scenario 2 thus reflects the notion that work is interdependent, and 

that managers may benefit automation of jobs that are both more and less vulnerable to automation than 

their own job.  

Scenario 3, on the other hand, envisions that people will benefit equally from the automation of 

their own job tasks, albeit to a small degree. The multiplier of 0.05 across job level quartiles in scenario 3 

captures the notion that everyone is able to use automation as a complement their job tasks, increasing 

their market value by about 5%. This implies that workers have some control over how they use 

automation, and that they are able to boost their own market value by usefully leveraging automation. 

To document the effects of these proposed changes, I examine how the slope of the relationship 

between a job’s median salary (medsalj) and its aggregate level of complexity (joblevj) would change 

under each of these three scenarios, and under the two different sets of automation bottleneck assumptions 

described in task_safet scenarios A and B above. I examine these projected changes overall and by 

RIASEC interest category. 
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Findings 

First, I consider the projected automation risk across 873 jobs under bottleneck scenarios A and 

B. Under bottleneck scenario A, in which theory of mind, flexible dexterity, and vision/strategy are 

equally weighted task bottlenecks, the average job has an automation risk of 32.7, with a range from 17.4 

to 49.3. This means that 32.7% of tasks in the average job are vulnerable to automation. 

In scenario B, the average job has an automation risk of 27.4, with a range from 14.4 to 41.2, 

meaning that 27.4 of tasks in the average job are presumed to be at risk. The automation risk scores are 

lower in scenario B because scenario B assumes that 20% of all tasks are safe due to automation friction. 

Scenario B also assumes that flexible dexterity tasks are twice as hard to automate as theory of mind and 

vision/strategy tasks. The full distribution of projected automation risks for 873 jobs under each scenario 

is shown in Figure 1. 

 

Figure 1. Distribution of job automation risks under bottleneck scenarios A and B 

 

 

Next, I consider how automation risk is projected to affect workers at different levels of education 

and in different RIASEC categories of interest. Given that the automation risk scores are constructed to 

decline as jobs’ complexity level increases, we would anticipate that it would covary positively with 
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education level, but the extent of such covariance is not clear a priori. We would also anticipate greater 

covariance with education level in scenario A than in scenario B, given that manual tasks are considered 

especially difficult to automate in scenario B.  

 In Table 2, I show that job automation risk declines almost linearly with the typical educational 

level of each O*NET job zone. Projecting a tighter bottleneck for flexible dexterity in scenario B does not 

change the pattern, except that it slightly compresses the mean differences between levels, so that the 

difference between less than high school and advanced is 13 points under scenario A and only 11 under 

scenario B. It is also noteworthy that jobs requiring less education show higher standard deviations in 

automation risks, meaning their risks are more varied than jobs that require higher levels of education. 

 

Table 2. Job automation risk by typical education levels of O*NET job zones  
 
 Scenario A Scenario B  
 mean sd mean sd n 
<HS 39.7 5.4 33.2 4.5 32 
  HS 37.5 5.0 31.3 4.2 279 
Assoc 33.3 4.5 27.8 3.8 207 
Bach 29.3 4.2 24.6 3.5 203 
Advan 26.5 3.7 22.4 3.1 152 
Total 32.7 6.2 27.4 5.1 873 

 
 

Table 3 presents means and standard deviations for automation risk by RIASEC interest category. 

Here again, estimates in scenario B are about five points smaller by design, due to the bottleneck for 

automation friction in scenario B, but they are otherwise similar in their comparative automation risks. 

The categories with the highest risks of automation, around 35 under scenario A and 29 under scenario B, 

are realistic (manual and outdoor), artistic, and conventional. It is striking that this finding holds even 

with the higher protection for flexible dexterity in scenario B.  
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Table 3. Job automation risk by RIASEC categories  
 
 Scenario A Scenario B  
 mean sd mean sd n 
Realistic 35.2 5.4 29.3 4.5 379 
Investigative 25.9 3.7 21.8 3.1 103 
Artistic 35.1 5.2 29.6 4.3   27 
Social 30.0 4.8 25.3 4.1 125 
Enterprising 30.2 5.3 25.4 4.5   90 
Conventional 34.6 6.2 29.1 5.2 149 
Total 32.7 6.2 27.4 5.1 873 

 
 

In Table 4, I present average automation risk estimates under scenarios A and B for 22 work sectors, 

where the sectors are defined by the two-digit major codes for SOC job classifications. As noted, and by 

design, automation risks are about five points lower in scenario B than scenario A. But it is notable that 

the rankings of sectors in terms of automation risks are unchanged between the two scenarios. This occurs 

even though scenario B doubles the bottleneck for flexible dexterity, thus potentially offering extra 

protection for workers in manual occupations. In both scenarios in Table 4, automation risks are highest 

for many manual and routine-oriented sectors including food preparation, production, food service, and 

office support. Automation risks are mid-range in a wide range of fields including construction, 

installation, arts, and business. And it is estimated to be relatively low in jobs that require high levels of 

expertise, including architecture, math and science jobs, and management. Human services like education, 

social services, and healthcare also fare well in Table 4 because their tasks involve theory of mind as well 

as the use of vision/strategy to achieve goals. 

 

Automation risk by salaries 

To further project the relationship between job automation risk and the distribution of earnings, I 

graph the risk of automation under scenarios A and B against median salaries for each job in 2022. In 

Figure 2, I display fitted trend lines of the relationship between automation risk and median salary, 
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showing bottleneck scenario A on the left and scenario B on the right. The scatterplot markers indicate the 

RIASEC category of each job, making it easy to see that automation risk is highest in realistic and  

Table 4. Estimated mean automation risks by 22 SOC major codes 
 
Sector Scen A Scen B 
Food Preparation 40 33.5 
Office and Admin Support 39.3 33.1 
Personal Care  38.5 32.3 
Production Occupations 37.8 31.5 
Farming, Fishing, Forestry 37.7 31.3 
Building and Grounds 36.9 30.7 
Sales and Related 36.5 30.7 
Transportation/Materials Moving 35.6 29.6 
Construction and Maintenance 34.9 29.1 
Installation, Maintain, Repair 34.7 28.9 
Arts, Design, Entertain, Media 34.1 28.7 
Healthcare Support 33 27.6 
Legal Occupations 30.9 26.3 
Business and Finance 30.3 25.7 
Protective Services 29.8 24.9 
Educational/Library 29.2 24.7 
Community/Social Services 29 24.5 
Architecture and Design 28.5 23.9 
Healthcare Practitioners 28.2 23.6 
Computer and Math 27.6 23.4 
Life, Physical, Social Scie 27.4 23.1 
Management Occupations 27.4 22.9 
Total 32.7 27.4 
 

conventional jobs, which also have the lowest pay, and it is lowest in investigative and social jobs, which 

also show some of the highest salaries. However, because automation risks are higher in scenario A, the 

relationship is somewhat flatter in scenario B. The patterns in both scenarios suggest that automation 

patterns are likely to increase income inequality. However, a scenario with general protection through 

automation friction and particular protection for flexible dexterity suggests that disparities in job loss 

between higher- and lower-paid workers may be not quite as severe as in the equal bottleneck scenario. 
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Figure 2. Job automation risk by median salaries and RIASEC categories (n=867 jobs) 

 
 
 

Salary distributional changes by job level  

Finally, I consider possible consequences of automation risk for shifts in jobs’ median salaries as 

automation is capitalized into the market value of people’s work. Here, I present results for salaries under 

the distributional assumptions of Table 1. Recall that scenario 1 redistributes 10-20% of job automation 

risk differentially by job level quartiles within sector. Scenario 2 redistributes 10-20% of sector 

automation risk by job level quartiles within sector. Scenario 3, in contrast, capitalizes 5% of job 

automation risk into all salaries.  

 Table 5 captures projected changes in median salaries under each scenario with the equal and 

additional bottleneck assumptions in scenarios A and B, respectively. Median salaries would rise 3.5% 

and 3.7%, respectively under the redistribution of sector-level automation risks in scenarios 2A and 2B. 

This is because those at higher job levels, who have lower automation risks by construction, can capture 

higher sector-level average risks. They are projected to rise 2% in scenarios 1A and 1B. They would rise 

least, at 1.3% and 1.4%, respectively, in the equal-capitalization scenarios of 3A and 3B. The different 

assumptions about bottleneck construction in A and B make very little difference for average projected 

salary changes. 
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Table 5. Projected changes in median salaries under automation and distribution assumptions 
 

  Mean sd Min Max Δ from 
original  

2022 
Median    66,801     34,526     27,270    226,880   
A: Equal Bottlenecks     
Scenario 1A    68,114     39,173     23,786    260,745  2.0% 
Scenario 2A    69,113     35,889     28,141    235,279  3.5% 
Scenario 3A    67,702     38,932     23,362    257,154  1.3% 

B: Additional Friction and Dexterity Bottlenecks  
Scenario 1B    68,109     39,477     23,459    262,106  2.0% 
Scenario 2B    69,279     35,945     28,223    235,720  3.7% 
Scenario 3B    67,768     39,274     23,103    259,075  1.4% 

  
However, my primary interest in the salary projections is how they would affect salary inequity. 

In Figure 3, I examine how the slope of the bivariate relationship between salaries and job levels would 

be expected to change in each scenario in Table 5.  

Figure 3. Projected changes in slopes of salaries by job level across six scenarios 
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In Figure 3, I find that the disparities in salaries by job level would rise most dramatically, by 23-

24%, in the scenario where job-level rather than sector-level automation is capitalized differentially into 

salaries. This is shown at left in scenarios 1A and 1B. It is unexpected that inequality rises more in the 

bottom-row B scenarios than the top-row A scenarios, since the B scenarios include greater protections for 

flexible dexterity and for automation friction overall.  

Inequality still rises in scenarios 3A and 3B, where salaries rise by 5% across the board, because a 

flat percentage change boosts higher salaries more than lower ones in absolute terms. Even so, scenarios 

3A and 3B show much less change in salary inequality than the scenarios in which salaries are 

differentially affected by job level quartile. This suggests that supporting workers in benefitting from their 

own automation efficiencies may greatly moderate the tendency of AI-enabled automation to exacerbate 

income inequality. It also shows that inequality is likely to increase even under the most optimistic 

scenarios. 

A related question is how salary inequality would change by RIASEC interest categories. Having 

this information may allow people to make better-informed decisions about skill acquisition in different 

career categories, and it may allow educators to better advise and support students. To address this 

question, I present Figures 4 through 6, in which the relationship between current and projected median 

salaries are graphed against job levels separately by RIASEC categories. I show anticipated changes in 

these slopes by RIASEC category for three of the six scenarios above. Figure 4 presents the change in 

slopes for scenario 1A, with differential capitalization of job automation risk by sector. Figure 5 presents 

the slope change for scenario 2B, with differential capitalization of sector automation risk by sector. 

Figure 6 shows the change in slopes for scenario 3B, with uniform 5% capitalization of sector automation 

risk. Figure 4 assume equal automation bottlenecks, whereas Figures 5 and 6 assume additional 

bottlenecks for automation friction and flexible dexterity. I present these three scenarios by RIASEC 

categories because they capture notable variation among the six scenarios in Figure 3. 
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Figure 4. Scenario 1A: salary-by-job level slope projection by RIASEC category 

 

Figure 5. Scenario 2B: salary-by-job level slope projection by RIASEC category 
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Figure 6. Scenario 3B: salary-by-job level slope projection by RIASEC category 

 

In Figure 4, under scenario 1A, we see that the slopes change at different rates across categories, 

from a small 11% change in conventional jobs, to a 54% increase in slopes in investigative jobs and 65% 

increase in artistic jobs. This is notable, as the baseline slope is much flatter in artistic jobs than in 

investigative jobs, and because I anticipate artistic jobs to be much more vulnerable to automation than 

investigative jobs, as noted above.  

Turning to Figure 5, which assumes additional automation bottlenecks as well as salary 

redistribution by sector instead of by job, I find patterns very similar to those in Figure 4, but with slightly 

higher slope increases in all categories except conventional jobs. I now predict a slope change as high as 

72% in artistic careers. This suggests that salary inequality within artistic jobs has heightened propensity 

to rise, given the capacity of generative AI to create original content. 

 In Figure 6, which assumes additional automation bottlenecks and uniform 5% capitalization of 

automation risks, the projected relationship of salaries to job level rises by only 4-5% in all RIASEC 
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categories, including the investigative and artistic categories in which it spiked under the redistributive 

scenarios.  

 

Conclusion   

 A pressing question with the rise of AI is how its potential to automate white collar analytic and 

creative tasks will affect the distribution of jobs and salaries in the labor market. The debate is whether AI 

will largely serve as a complement to existing work, enabling greater productivity and prosperity, or 

whether it will slowly replace human workers as their baskets of core tasks are automated. My analysis 

builds on existing papers by Frey and Osborne (2017) and Felton, Raj, and Seamans (2021) but moves 

beyond them in a few ways. First, I treat jobs as baskets of 41 concrete work activities, whose importance 

and levels of sophistication have been rated by incumbents in the jobs. I adapt and update Frey and 

Osborne’s (2017) framework of automation bottlenecks as previously developed by Autor, Levy, and 

Murnane (2003), using a theoretical perspective on tasks that are difficult to automate. I test two different 

versions of this automation theory—one in which all three bottlenecks are equal, and the other in which 

flexible dexterity is twice as difficult as theory of mind and vision strategy, and in which all jobs are also 

protected by frictions in automation, such as tool/task misalignment and worker learning curves. I provide 

refined estimates of job automation risk by scaling tasks’ relative importance by the level of 

sophistication at which they are carried out. Assuming that the difficulty of automation rises with task 

complexity, I am able to project the fraction of a job’s tasks that are vulnerable to automation and to 

assess how this vulnerability varies by the jobs’ aggregate level of sophistication. I am also able to project 

possible changes in salary inequality by considering different scenarios for who will use AI as a 

complement versus a substitute, and to what extent.  

 I find that differential weighting of automation bottlenecks matters very little in terms of the 

distribution of automation risks or salary distributions. What matters instead are assumptions about who 

wins and who loses from automation vulnerability within a sector, and to what extent. I show that when 
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workers at all levels are able to take advantage of their own automation efficiencies, salary inequality may 

still rise, but by very little.  

A key takeaway is that even if people capture the productivity and pay benefits of automation in 

small-but-equal proportions, returns to expertise will still increase. And if, as seems likely, returns to 

automation are not equally captured, then returns to expertise will increase more, and the bottom part of 

the expertise distribution will lose ground. In essence, the problem is not automation per se. The problem 

is heterogeneity in who controls and benefits from the resulting efficiencies.   

 My projections about the likely share of tasks that can be automated in the next generation appear 

plausible, with ranges from 17% to 49% of tasks across jobs in the equal bottleneck scenario and 14% to 

41% of tasks in the more-conservative scenario. Based on prior research on automation risk (D. H. Autor 

et al., 2003), and on documented experiences with current AI (Ji et al., 2022; Lohr, 2024; Toner-Rodgers, 

2024), it is also likely that complex tasks will remain harder to automate than simple tasks, which is the 

assumption I use in scaling automation risk by task sophistication. 

 

Implications for educators  

It is important to note that my projections about salary distributional changes are modest, 

assuming that only between 5% and 20% of automation risks are capitalized into salaries. The reality 

could of course be much higher. In addition, the beneficiaries of automation could be fewer than the top 

half or top quartile of the job-level distribution. This is why it is so important that educators prepare 

students to leverage AI so they are equipped to capture and utilize their own automation gains.  

Educators may wish to steer students toward interest categories that are less vulnerable to 

automation, including investigative, social, and entrepreneurial tasks. This recommendation is consistent 

with recent studies of students’ performance on science tests, in which the comparative advantage of 

children over AI lies in critical thinking and the application of human knowledge to novel scenarios (Zhai 

et al., 2024).  
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In addition, educators should work to incorporate hard-to-automate skills like theory of mind, 

vision/strategy, and even flexible dexterity into courses in a wide array of disciplines. This will allow 

students to cultivate adaptive, hard-to-automate skills that they can apply across many different careers.  
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Appendix A 

 
Figure A1. 2022 prevalence of jobs in each RIASEC category (n=749 six-digit SOC occupations) 
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Figure A2. 2022 median salaries of jobs in each RIASEC category (n=749 six-digit SOC occupations) 
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