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ABSTRACT: 

Background. In randomized controlled trials, attrition rates often differ by treatment 
status, jeopardizing causal inference. Inverse probability weighting (Hirano et al, 2003; Busso et 
al., 2014) and estimation of treatment effect bounds (e.g. Lee, 2009; Angrist et al., 2006) have 
been used to adjust for this bias. Objectives. We compare the performance of various methods 
within two samples, both generated through lottery-based randomization: one with considerable 
differential attrition and an augmented dataset with less problematic attrition. Research Design. 
We assess the performance of various correction methods within the dataset with problematic 
attrition. In addition, we conduct simulation analyses. Results. Within the more problematic 
dataset, we find the correction methods often performed poorly. Simulation analyses indicate that 
deviations from the underlying assumptions for bounding approaches (Angrist et al., 2006) 
damages the performance of estimated bounds. Conclusions. We recommend the verification of 
the underlying assumptions in attrition correction methods whenever possible and, when 
verification is not possible, using these methods with caution. 
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1. INTRODUCTION 

Since its introduction by Angrist (1990) to evaluate the impact of military service on 

earnings, a growing literature has made use of lottery-based randomization to estimate causal 

effects of educational and other social programs (Abdulkadiroglu et al., 2009; Angrist, Bettinger, 

Bloom, Kremer, & King, 2002; Cullen, Jacob, & Levitt, 2006; Deming, Hastings, Kane, & 

Staiger, 2014; Dobbie & Fryer, 2009; Engberg, Epple, Imbrogno, Sieg, & Zimmer, 2014; Hoxby 

& Rockoff, 2004; Rouse, 1998). 

Lottery-based analyses are a subset of Randomized Controlled Trials (RCTs). By 

comparing average outcomes of those placed and not placed, researchers hope to estimate causal 

effects of programs and interventions, unaffected by selection bias. However, it is common for 

participants not assigned to treatment to seek outside options. For example, in educational 

interventions, control students often seek opportunities outside the district, by moving or 

attending a charter or private school. If attrition mechanisms differ based on random assignment, 

this creates a differential attrition problem, jeopardizing the identification of causal effects. 

Differential attrition and selection bias are common among social experiments1 

(Greenberg & Barnow, 2014). For example, in a review of development economics RCTs 

published between 2009 and early 2015, Molina and Macours (2015) find that 19 percent had 

differential attrition, and in many cases, authors simply restrict the analysis to a subsample in 

which attrition was balanced. Unfortunately, WWC reports do not allow us to precisely estimate 

the share of RCTs that did not meet their attrition standards,2 but the What Works Clearinghouse 

(2014) suggests that bias from empirical studies in education has been fairly modest, generally 

 
1 The authors include “social experiments” related to health, education, employment, job training, welfare, and 
housing. 
2 The study design (RCT, QED, RD, etc.) is only reported for studies that did meet the standards, preventing us from 
knowing the denominator for such a proportion. 
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not exceeding 0.11 SD, though theoretically it could go much higher if attrition and baseline 

characteristics are highly correlated.  

Removing all selective attrition bias would be possible if either all covariates determining 

the outcome are known (Steyer, Gabler, von Davier, & Nachtigall, 2000); or the selection 

process is completely known (Cook, 2008; Goldberger, 1972; Shadish, Cook, & Campbell, 

2002). Often, however, researchers cannot directly observe all covariates or accurately model the 

selection process (Puma et al., 2009), so selection bias due to attrition remains an issue. 

In this paper, we study the performance of methods aimed at correcting differential 

attrition, specifically inverse probability weighting (IPW) methods (Busso, DiNardo, & 

McCrary, 2014; Hirano, Imbens, & Ridder, 2003) and two common bounding approaches 

(Angrist et al., 2006; Lee, 2009). We use administrative data for seven cohorts of lottery 

applicants to dual-language immersion programs (DLI) in Portland Public Schools (PPS), a large 

urban school district. This district-level dataset, on its own, suffered from differential attrition, 

which may have biased the treatment effect estimate. In this context, it is not surprising that 

families who do not win the lottery may be less likely to enroll in the district, creating potential 

for selection bias. However, differential attrition rates do not necessarily indicate that selection 

bias will result, for example if attrition – despite occurring at different rates in the treatment and 

control group - is completely random. Moreover, without knowing if the assumptions for these 

methods are met, we could introduce more bias into our estimates. To study the risks and 

benefits of various correction methods, we use an augmented dataset for the full state of Oregon 

public schools, including charters, provided by the Oregon Department of Education (ODE), 

which suffers much less from both overall and differential attrition. In the absence of an 

augmented dataset, we may be tempted to rely on correction methods without fully 
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understanding whether such methods are appropriate, but a unique feature of our study is that we 

are able to use benchmark effects obtained from the state-level dataset to assess the performance 

of these correction methods within the problematic district-level dataset. 

The use of a benchmark to test the relative performance of correction methods is not new 

(Cook, Steiner, & Pohl, 2009; Dehejia & Wahba, 1999; Garlick & Hyman, 2016; Heckman, 

Ichimura, Smith, & Todd, 1998; LaLonde, 1986; Robins & West, 1986; Smith & Todd, 2005; 

Steiner, Cook, Shadish, & Clark, 2010). In some cases, administrative data and survey data have 

been used to supplement each other in the presence of missing data (Barnow & Greenberg, 2015; 

Greenberg & Barnow, 2014; Robins & West, 1986). For example, Robins and West (1986) 

supplemented interview data from the Seattle and Denver Income Maintenance Experiments 

(SIME/DIME), which suffered from attrition, with Social Security Administration data, to assess 

the performance of various correction methods and assess the extent to which the estimated 

results under the original evaluation would have been biased. Notably, studies often lack an 

experimental or quasi-experimental benchmark against which correction models can be 

evaluated (Clark, Rothstein, & Schanzenbach, 2009; Melenberg & van Soest, 1996; Mroz, 1987; 

Newey, Powell, & Walker, 1990), so it is useful to understand the implications of not being able 

to assess the necessary assumptions for those methods. While we are not the first to use a 

benchmark to test the performance of various correction methods, there is little research that 

explicitly assesses and acknowledges the dangers of using these under often untestable 

assumptions. In particular, few studies have directly addressed the sensitivity of results using 

Angrist et al. (2006) bounds. See Barrow, Richburg-Hayes, Rouse, and Brock (2014) for one 

discussion of the sensitivity to the choice of artificial censoring points. In addition, we conduct 

simulation analyses that alter the degree to which the assumptions for various methods are met, 
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and then quantitatively assess at what point the methods are unable to accurately estimate the 

parameters of interest. 

Specifically, we ask: 

1. Do various correction methods (inverse probability weighting or estimation of 

informative bounds) adequately compensate for differential attrition in a random 

assignment evaluation? 

2. How do various assumptions within these methods affect our results? 

The rest of the paper proceeds as follows. Section 2 reviews the literature on differential attrition 

correction methods. Section 3 describes the data and sample for the analysis. Section 4 describes 

the empirical methods studied in this paper, and Section 5 presents the results of tests of testing 

whether the necessary assumptions for these methods are met. Section 6 presents the results of 

the main analysis using the non-simulated data and Section 7 describes our simulation exercise. 

Finally, section 8 outlines our main conclusions. 

2. REVIEW OF THE LITERATURE ON DIFFERENTIAL ATTRITION 

CORRECTION METHODS 

A common approach for minimizing differential attrition bias is IPW (e.g., Bailey, 

Hopkins, & Rogers, 2016; Imbens & Wooldridge, 2009; Reynolds, Temple, Ou, Arteaga, & 

White, 2011; Frölich & Huber, 2014; Molina & Macours, 2015; Muralidharan & Sundararaman, 

2014). In this case, observations in the treatment and control group are reweighted to remain 

comparable to their pre-attrition samples. While the importance of the specification of the 

propensity score model has been studied (e.g., Austin & Stuart, 2015; Hogan & Lancaster, 2004; 

Wooldridge, 2007), in practice, researchers often have limited information with which to assess 

the appropriateness of their approach (Puma et al., 2009). As a result, Puma et al. (2009) find that 
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sophisticated weighting methods often do not reduce the bias to the What Works Clearinghouse 

threshold of 0.05 SD (What Works Clearinghouse, 2013), when data are not missing at random, 

as is likely to be the case when data exhibit high rates of differential attrition. 

Alternatively, researchers have used bounding methods to estimate a range of possible 

effects under different attrition scenarios. Molina and Macours (2015) find that bounding 

methods were used in almost 15 percent of the 68 studies in their review, although their review 

may not be representative of the approaches taken within education, which may be less likely to 

use these types of methods. For example, Puma et al.’s (2009) assessment of correction methods 

does not test the performance of bounding methods, instead discussing some of the practical 

challenges with certain bounding approaches, and leaving out the newer Angrist et al. (2006) and 

Lee (2009) approaches. 

In our review of the literature, focusing primarily on educational interventions, when 

bounding is used, the most popular approach appears to be that proposed by Lee (2009). See, for 

example: Aker and Ksoll (2015); Aron-Dine, Einav, and Finkelstein (2013); Bold, Kimenyi, 

Mwabu, Ng’ang’a, and Sandefur (2013); Boo, Palloni, and Urzua (2014); Di Nardo, McCrary, 

and Sanbonmatsu (2006); Engberg et al. (2014); Glewwe, Illias, and Kremer (2010); Hastings, 

Neilson, and Zimmerman (2012); Karlan, Fairlie, and Zinman (2012); Kremer, Miguel, and 

Thornton (2009); Molina and Macours (2015); and Muralidharan and Sundararaman (2014). A 

similar approach is Manski’s worst-case scenario bounds (Horowitz & Manski, 1998; Horowitz 

& Manski, 2000, Imbens & Manski, 2004; Manski, 1990; Manski, 1995). See, for example: 

Aron-Dine et al. (2013); Bailey et al. (2016); DiNardo et al. (2006); Holm and Jaeger (2009); 

Lechner and Melly (2010); Karlan et al. (2012); and Ksoll, Aker, Miller, Perez-Mendoza, and 

Smalley (2014). Both methods obtain bounds for extreme case scenarios under relatively weak 
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assumptions about nonresponse. These methods tend to provide wide and largely uninformative 

bounds, particularly if the rate of missing data is high (Puma et al., 2009). 

Other researchers have proposed bounding the estimates based on certain assumptions 

about which participants who are not observed in the outcome data. These include the parametric 

and non-parametric bounding approaches proposed by Angrist, Bettinger, & Kremer (2006) as in 

Barrow, Richburg-Hayes, Rouse, and Brock (2014), as well as extensions and modifications of 

these bounding methods (e.g., Engberg et al., 2014; Grilli & Mealli, 2008; Huber & Mellace, 

2013; Lechner & Melly, 2010; Zhang & Rubin, 2003; Zhang, Rubin, & Mealli, 2008).  

In contrast with the Lee and Manski approaches, these bounding approaches make restrictive 

assumptions about which participants are missing from the outcome data. For example, Angrist 

et al. (2006)’s parametric and non-parametric bounding approaches assume that non-

respondents/missing observations come from only one side of the outcome distribution. Other 

approaches (Huber & Mallace, 2013; Grilli & Mealli, 2008; Lechner & Melly, 2010) derive 

bounds under the assumption of stochastic dominance, that “the potential outcome among the 

always observed at any rank of the outcome distribution and in any treatment state is at least as 

high as that of the compliers or the defiers” (Huber & Mallace, 2013, p. 17).  This assumption is 

not imposed by Lee (2009). Engberg et al. (2014) estimate informative bounds around the 

treatment effects in a magnet program using a “worst-case” scenario approach (Horowitz & 

Manski, 2000; Manski, 1990), assuming that “the support of the outcome variable is bounded to 

deal with nonrandom attrition” (p. 29). Building on this approach, they use known quantiles of 

the outcome distribution in constructing the bounds, similar to the Angrist et al. (2006) approach. 

By imposing assumptions on the attrition process, these bounding approaches can provide tighter 

bounds than those from more relaxed approaches like Lee (2009). However, researchers often 
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lack a full understanding of who the non-respondents/missing participants are, and there is little 

prior research on the consequences of imposing these assumptions if they turn out to be invalid. 

3. DATA AND SAMPLE 

This study utilizes data for seven cohorts of students who applied to attend a DLI 

program in Portland Public Schools (PPS) in Portland, Oregon for the school years beginning fall 

of 2004-2010. PPS serves about 47,000 students and is among the largest two public school 

districts in the Pacific Northwest.3 Outcome data were measured through the 2013-14 academic 

year, so the oldest two cohorts can be tracked through eighth grade, and include grade 3-8 

reading test scores on the state test, the Oregon Assessment of Knowledge and Skills (OAKS).4  

Slots to DLI were assigned through a lottery system. In the spring prior to their child’s 

pre-k or kindergarten year, families were able to apply for up to three school programs, including 

DLI. In many of the DLI programs, priority was given based on sibling, neighborhood, or native 

speaker preferences. Consequently, the probability of admission to a program depended on the 

program to which one applied and the program-specific preference category into which one fell. 

Randomization occurred only in school-by-year-by-preference category strata that had available 

slots and were oversubscribed. In other words, lotteries are considered “valid” only if there are 

winners and non-winners within a given lottery strata in a given year. The lottery-applicant 

sample included 3,457 students, 1,946 (56.3%) of which participated in valid lotteries. Of the 

1,946 that participated in valid lotteries, 864 (44.4%) won DLI slots and 1,082 (55.6%) did not.  

Attrition 

This paper builds on the evaluation of this program presented in Authors (2017). Our 

 
3 For more details on the lottery process or the dual-language immersion programs in PPS see Authors (2017). 
4 Math test scores for these grades were also available, but for simplicity we focus here on the reading test scores. 
Full set of results are available at Authors (2017). For the simulation analyses, we focus only on grade 3 outcomes, 
although these models could theoretically be extended to future grades as well. 
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outcome of interest in this paper is students’ reading assessment scores on the OAKS, as 

measured in grades 3 through 8. We captured these outcomes first through data provided by the 

district, but due to high overall attrition (27%) and an average differential attrition rate of 

approximately 12.5%, we supplemented these with state-wide data provided by the Oregon 

Department of Education (ODE). The ODE data included the PPS data but allowed us to track 

students who had left PPS as long as they remained in Oregon public schools—charter or 

traditional. As a consequence, overall attrition declined to 16.5%, and sample differential 

attrition declined to an average differential attrition rate of just 3%, allowing our main analysis 

(Authors, 2017), which used the augmented dataset, to fall within the liberal threshold (and very 

near the conservative threshold) for meeting the U.S. Department of Education’s What Works 

Clearinghouse evidence standards (WWC, 2014).5 While this does not guarantee that no 

differential attrition bias exists, the risk of bias is likely lower than in the district-level dataset. 

Thus, the ODE state-level data provides a unique opportunity, serving as the benchmark dataset 

in our current analysis examining the ability of IPW and bounding methods to address the higher 

levels of attrition in the district-provided (PPS) dataset.  

Table 1 presents data on persistence in the valid lottery sample by lottery cohort in both 

the ODE benchmark sample and the PPS higher-attrition sample. The set of columns on the left 

shows the number of students in valid lotteries by cohort. The next three columns show the 

number of randomized students we would be able to observe in each tested grade if there were 

zero attrition. The number declines by grade because only the older cohorts can be tracked into 

the higher grades, and the only grade into which all seven cohorts are tracked is grade 3. The 

 
5 The What Works Clearinghouse (WWC) is an initiative of the U.S. Department of Education’s Institute of 
Education Sciences that evaluates research studies on the effectiveness of educational interventions. The WWC 
produces Standards Briefs to explain the rules used to assess the quality of studies, including issues such as attrition. 
For more information, visit the WWC’s webpage at http://whatworks.ed.gov. 

http://whatworks.ed.gov/
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next pair of columns shows the proportion of students randomized who were observed in a given 

grade in the ODE benchmark sample, among lottery winners and losers, respectively. The far 

right pair of columns reflect the proportion observed, by grade and treatment status, in the 

higher-attrition PPS sample. Though differential attrition is present in both samples, what is 

important here is that the ODE samples had substantially lower levels of overall and differential 

attrition, meeting the WWC liberal threshold in grades 3 through 6, and even meeting the WWC 

conservative threshold in grades 7 and 8. In contrast, differential attrition in the PPS sample is 

substantially higher, and none of the comparisons in the PPS sample fall within the WWC 

conservative or liberal attrition thresholds. Thus, we attempt to replicate estimated effects in the 

ODE sample by applying weighting and bounding methods to the higher-attrition PPS sample. 

[TABLE 1 AROUND HERE] 

To assess what types of students decide not to enroll in PPS, we estimate discrete choice 

probit models predicting whether observation in PPS in future years (enrollment and a valid test 

score). Separate models were used for each grade level, because attrition mechanisms may re by 

grade. For example, decisions to leave the district may occur differently at the transition to 

middle school. We estimate these models among the set of students randomized at baseline and 

observable in the ODE data in the outcome year. The kindergarten and third grade results are in 

Table 2, for the full sample, and for treatment and control units separately. The last two columns 

indicate whether the results differ between treatment and control. While the kindergarten and 

third grade models did not have baseline test scores available as possible controls, we used 

lagged test scores as an additional control variable in each probit model from grade 4-9. 

[TABLE 2 AROUND HERE] 

In the full sample, winning the lottery was the most significant predictor of enrollment in 
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PPS, consistent with the differential attrition described previously. Black students were less 

likely to be observed in PPS in grade 3, relative to white students, and students without an 

identified race in the data were less likely to be observed in PPS in kindergarten and third grade. 

Students eligible for free- and reduced-price lunch (FRPL) and special needs students were more 

likely to be enrolled in PPS in kindergarten. Finally, students whose first language was not 

English were less likely to be observed in PPS in kindergarten and third grade. 

The results for the treatment and control groups indicate somewhat different attrition 

processes for the two groups. The last two columns of Table 2 test whether the coefficients differ 

between the treatment and control groups and indicates differences for Black students, FRPL 

students, and special needs students within the two groups. However, in both the treatment and 

control groups, students with a missing race variable and students whose first language was not 

English are less likely to enroll in PPS. Overall, Table 2 indicates that the attrition processes 

differ between the treatment and control groups, and we might expect they would differ in terms 

of unobservable characteristics as well.  

We show the results of balance tests on covariates between lottery winners and non-

winners for the two samples (the benchmark ODE sample and the PPS sample) in Table 3. On 

the left, we show covariate balance for the observable kindergarteners (no test scores available) 

and third graders (with observed reading test scores) in the ODE sample. Further, in Panel B, we 

show the covariate balance within the PPS samples (both unweighted and inverse probability 

weighted).6 In addition to the unadjusted differences, we provide differences and p-values that 

have been adjusted for lottery strata fixed effects and therefore indicate within-strata balance. 

Table 3 shows that lottery winners in these samples were less likely to be of an “other race,” and 

 
6 Given that inclusion in the PPS sample requires having an observed test score in third grade, the kindergarten 
covariate balance for the PPS would have been redundant to include.  
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for the ODE sample in third grade, slightly less likely to be female. Otherwise, the groups are 

observably similar. In our particular context, even relatively high rates of differential attrition 

from the PPS sample did not create much imbalance in terms of observable characteristics. Yet, 

given the relatively limited set of observable characteristics, which notably excludes baseline test 

scores, there could still be concerns about selection on unobservables that might bias our results.  

[TABLE 3 AROUND HERE] 

4. EMPIRICAL METHODS 

Following the analysis in Authors (2017), our main specification for estimating the effect 

of winning the DLI lottery on student academic performance is the following: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + �𝑫𝑫𝑫𝑫𝑫𝑫𝒊𝒊
𝒌𝒌𝒌𝒌𝑮𝑮𝒊𝒊𝒊𝒊�𝜶𝜶 + 𝑮𝑮𝒊𝒊𝒊𝒊𝜹𝜹 + 𝒍𝒍 + 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝜀𝜀𝑖𝑖𝑖𝑖,  (1) 

where 𝑦𝑦𝑖𝑖𝑖𝑖 represents reading test scores for student i at time t. 𝑮𝑮𝒊𝒊𝒊𝒊 is a vector of grade-level fixed 

effects and 𝒍𝒍 denotes lottery strata fixed effects. The key variables of interest, 𝑫𝑫𝑫𝑫𝑫𝑫𝒊𝒊
𝒌𝒌𝒌𝒌𝑮𝑮𝒊𝒊𝒊𝒊 , denote 

the effect of winning a DLI slot in kindergarten for each grade level. This calculates treatment 

effects separately by grade, rather than one overall treatment effect, consistent with the main 

analysis (Authors, 2017). 𝑿𝑿𝒊𝒊 denotes student characteristics observed in kindergarten, including 

race/ethnicity, gender, FRPL status, whether the child’s first language is English, and whether 

the child is classified as needing special education services. 

We obtain estimates of the model in (1) using pooled ordinary least squares and obtained 

clustered-robust standard errors, 𝜀𝜀𝑖𝑖𝑖𝑖, at the student level.7 Estimates from (1) will represent the 

average intent-to-treat (ITT) parameter of winning a place in the DLI program on student 

achievement, which is the estimated effect of winning the lottery. We consider the ITT estimate 

 
7 Authors (2017) estimated a student random effects model instead. Using this more efficient estimation approach 
lead to slightly more significant effects in several grades. 
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our parameter of interest when exploring the performance of different methods to correct for 

selective attrition. The estimates the effect of winning the lottery, regardless of whether the 

individual actually obtained treatment. Instrument variables approaches could be used to estimate 

the treatment for compliers, but such estimates are often less precise. 

Our benchmark estimates are obtained by estimating model (1) on the state-sourced 

dataset (ODE), still restricted to the lottery sample. In the other extreme, we estimate equation 

(1) restricting the sample to lottery participants who eventually enrolled in PPS. These ITT 

effects are referred to as the “Naïve PPS” results and may be contaminated by differential 

attrition bias. Finally, we conduct analyses using a variety of attrition correction methods and 

compare to the benchmark results. In the section that follows, we describe the correction 

methods and test the assumptions required for each, noting any limitations in our ability to do so. 

5. TESTING NECESSARY ASSUMPTIONS 

Inverse probability weighting 

First, we describe our IPW approach and assess whether the required assumptions appear 

to be met in our case. Under the strong assumptions of selection on observables, or conditional 

independence, and common support between treated and controls, we reweight the remaining 

observations of treated and controls so they remain comparable to their respective benchmark 

sample on observable characteristics.8 We define ∏(𝑋𝑋𝚤𝚤)�  as the estimated probability of being 

observed in the PPS analytic sample. For each grade, and separately for treated and control 

students, we estimate the propensity of being observed as a function of the child’s race/ethnicity, 

gender, FRPL status, whether the child’s first language is English, and whether the child is 

 
8 Additionally, some researchers would weight observations to make treatment and comparison groups similar on 
observable characteristics, however in our case, given the limited differences we observe between treatment and 
comparisons units, even after differential attrition, we do not anticipate this will make a difference in our results. 
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classified in kindergarten as needing special education services. We then define weights as 1
∏(𝑋𝑋𝚤𝚤)�  

and use weighted least squares to obtain estimates of the average ITT effect of winning the DLI 

lottery. In addition to weighting, these models also control for observable characteristics, 

representing a double-robust IPW method. 

Although relatively easy to compute, the IPW approach relies on two strong assumptions: 

1) Common support, meaning that the range of values of the propensity score for the 

propensity to be observed) has sufficient overlap among those observed in PPS and those not 

observed in PPS. We test this separately among treatment and comparison units, in each case 

comparing the distribution of propensity scores for those observed in PPS in grade 3 to those not 

observed. We do have some concerns about common support – in particular, while there are 

sufficient students who were not observed in PPS with high propensity scores, there is a lack of 

students observed in PPS with low propensity scores.  

2) Conditional independence assumes we have enough information about 

participants to fully model selection, such that treatment status, conditional on observable 

characteristics, is random. This is a strong assumption given the limited information typically 

available in education records, and in our case, a lack of baseline test scores.  

Given an inability to assume the assumptions required for IPW are fully met, we also 

study a variety of bounding approaches that have been proposed to relax the assumption of 

selection on observables.9 

Lee (2009) bounds  

 
9 We do not present the results of Angrist et al.’s (2006) parametric method, as the normality assumption is not met 
in our case. Another option is a two-step parametric selection model correction (Heckman, 1979) which is less 
sensitive to the normality assumption, but requires an exclusion restriction (Puma et al., 2009). Thus, it is often 
impractical. Our data did not support the use of such an exclusion restriction, so we do not study that approach here. 
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Next, we test a bounding approach proposed by Lee (2009). The idea is to identify the 

“excess” number of students who are induced to enroll in the district because of winning the 

lottery and then “trim” the upper and lower tails of the observed test score distribution by this 

number. In this way, one would have bounds for the average ITT effect of DLI assuming that 

either the best or worst students in terms of test scores are the ones deciding not to enroll. 

This approach requires two key assumptions: 

1) The treatment variable is independent of the errors in the outcome and selection 

equation. In our case, this is guaranteed through lottery-induced randomization. 

2) The selection equation can be written as a standard latent variable binary choice 

model, where treatment assignment only affects enrollment in the district in one direction (i.e. 

winning makes everybody either more probable to enroll in the district or less probable). This 

assumption is not possible to test, but there is no reason to suspect that winning a lottery to 

which a family chose to apply to would make enrollment in the district less likely. Given this, 

and our results in Table 2 which shows that winning the lottery was associated with higher rates 

of enrollment in PPS, we assume winning increases the likelihood of enrolling for all students. 

Thus, for the two key assumptions required for Lee (2009) bounds, one is clearly met due 

to randomization, and the other, while not fully testable, is intuitively attractive. 

Lee’s (2009) bounding method works as follows. The observed distribution of test scores 

for lottery winners is a mixture of two distributions: 1) the distribution for those who would have 

enrolled in the district regardless and 2) the distribution of those induced to enroll because of 

winning the lottery. We estimate the proportion of lottery winners that were induced to enroll 

because of winning the lottery in the following way: 

Pr( _ | 1) Pr( _ | 0)
Pr( _ | 1)

enrolled PPS Win enrolled PPS Winp
enrolled PPS Win

= − =
=

=
                     (2) 
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Each of the probabilities in (2) is estimated from the data. As in many cases, when only 

district data are available, and without baseline test scores, it is impossible to know the 

characteristics of those induced to enroll by winning the lottery. This method proposes to 

construct extreme case scenarios by assuming they are either the very best students in terms of 

test scores or the very worst.10 Thus, trimming the data for lottery winners by the estimated 

proportion of excess students (p), estimated following equation (2), in the top and bottom of the 

test score distribution, will provide us with bounds for the average ITT effect of those who 

would enroll in PPS irrespective of the treatment or “always enrollees” (Lee, 2009). 

Lee’s (2009) bounding approach requires few assumptions but in practice can lead to 

bounds that are wide and uninformative. Covariates can be included to help estimate tighter 

bounds (Tauchmann, 2014; Ksoll et al., 2014). To tighten the bounds, one would choose discrete 

variables that have explanatory power for the probability of enrolling in the district. Then, one 

would split the sample into cells defined by these variables and compute separate bounds for 

each cell. The average computed bound, weighted by the proportion of the sample in each cell, 

provides an estimate of the average ITT effect among “always enrollees.”11 

Angrist et al. (2006) parametric and non-parametric bounding approaches 

The final bounding method we study in this paper is the non-parametric bounding 

approach proposed by Angrist et al. (2006). We tested the assumptions for the Angrist et al. 

(2006) parametric approach as well, which requires the uncensored latent test score distribution 

to be normally distributed. If this assumption holds, the treatment effect can be recovered using a 

 
10 While in theory, one could test this if they had outcomes for the full distribution (as we do in our unique 
situation), in practice, researchers generally do not have outcome measures for the full (pre-attrition) sample. 
11 Similarly, Behaghel, Crépon, Gurgand, and Le Barbanchon (2015) suggest using information about how difficult 
it is to reach respondents such as the number of attempts made to reach each. This type of paradata is not observable 
in our data. 
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Tobit regression. This method also requires the assumption that those not observed in PPS would 

not have scored below the chosen censoring point (q1), although various censoring points can be 

tested to assess the robustness of the results. The normality assumption was not met in our 

case,12 so we do not use this approach to attempt to correct for differential attrition in the PPS 

sample. It is worth noting, however, that in practice, one would not be able to test this 

assumption without the availability of the augmented dataset. 

The non-parametric method (Angrist et al., 2006) relaxes the normality assumption. It 

generally leads to tighter bounds than Lee’s (2009) and requires three key assumptions: 

Selection bias only affects one part of the test score distribution; those not enrolling in PPS are 

either the highest performing students or the lowest performing students. In practice, researchers 

generally do not have outcome measures for the full (pre-attrition) sample, however, in our 

unique situation, we can test this using the outcomes for the full distribution. We test this 

assumptions two ways: 1) using baseline characteristics, we predict what type of students do not 

enroll in the district, following Table 2, a strategy that would be applicable to researchers who do 

not have the opportunity to recover missing observations with an augmented dataset and 2), we 

use the augmented dataset to compare the overall test score distribution to that of non-responders 

– a strategy that is only available to us given the augmented dataset.  

For this first test, as shown in Table 2, we do not have strong evidence that those deciding 

to enroll in the district are likely to be either the highest or lowest performing students. Judging 

by special needs status and FRPL status, the results suggest that those leaving the district, 

particularly control units, are relatively advantaged and thus, we may assume they would have 

higher potential test scores. However, students whose first language is not English leave at 

 
12 Specifically, we performed skewness and kurtosis tests, separately by grade level and subject. We reject the null 
hypothesis that the test score distribution is normally distributed in grades three, four, five, and nine. 
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higher rates, and in a highly diverse area, it’s not clear whether this is likely to be associated with 

advantage or disadvantage. Thus, these data do not provide a clear indication that this 

assumption has been met. 

In addition, we show histograms of the test scores of control group students who had an 

observed grade 3 reading test score in in the augmented data, and for the subset of these students 

who did not enroll in PPS, respectively, in Figures 1 and 2. The results clearly indicate that the 

PPS non-enrollees come from across the full distribution of potential test scores, indicating that 

the required assumption – that they come from one part of the distribution - has not been met.  

[FIGURE 1 ABOUT HERE] 

[FIGURE 2 ABOUT HERE] 

1) As in Lee (2009), we must assume that winning the lottery affects enrollment in 

the district only in one direction. Again, this is not directly testable, but we assume it makes all 

students more likely to enroll. 

2) We also must assume that treatment affects test scores in one direction. In our 

context, this would require assuming that winning the lottery does not harm individuals (or that 

individuals can opt out rather than suffer harm). For example, families choosing to apply for DLI 

may do so for one or more different reasons including: (1) to get their kids into a better school 

that may improve their learning generally, (2) to help them become proficient in another 

language, or (3) to get them into a positive and diverse environment. Rational parents are 

maximizing a complex objective function that includes these three outcomes, and they may be 

willing to trade off (1) to improve (2) and (3).  Some parents may choose to put their children in 

DLI even if they think it may lead to slightly reduced reading test scores, so that they can expose 

their children to a diverse environment and help them become bilingual. Subgroup results from 
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the main analysis (Authors, 2017) indicates positive or null effects – and no negative impacts – 

by grade eight for each of the groups assessed.13 However, we acknowledge that (based on an 

understanding of why families might choose DLI) this assumption may not be met. 

We define 𝑞𝑞𝑜𝑜(𝜃𝜃) and 𝑞𝑞1(𝜃𝜃) as the value in the test score distribution corresponding to the 

𝜃𝜃 quantile for those who lost the lottery and for those who won the lottery, respectively. Under 

the assumption that winning the lottery has positive effects, 𝑞𝑞1(𝜃𝜃)> 𝑞𝑞𝑜𝑜(𝜃𝜃), Angrist et al. (2006) 

showed that non-parametric bounds can be obtained, using linear regression, as follows: 

Upper-bound: The average ITT effect estimated when the distribution of test scores for treated 

students is smaller than 𝑞𝑞1(𝜃𝜃) and the distribution of test scores for students who lost the lottery 

is smaller than 𝑞𝑞𝑜𝑜(𝜃𝜃). 

Lower-bound: Estimated average effect when the distribution of test scores of both treated and 

controls is conditioned to be lower than 𝑞𝑞𝑜𝑜(𝜃𝜃).  

Assessing Correspondence 

 To assess whether differential attrition-correction methods produce results similar to the 

benchmark results, we combine statistical tests of equivalence and difference (Steiner & Wong, 

2018). The null hypothesis of the difference test (Tryon, 2001) is that the difference between the 

estimates equals zero: 𝐻𝐻0:𝛽𝛽𝐴𝐴 − 𝛽𝛽𝐵𝐵 = 0. Given that the samples are not independent, the 

estimated standard error of the difference must account for this dependency. Bifulco (2012) 

demonstrates that upper and lower bounds of the standard error can be calculated assuming that 

the sampling distributions of estimates have a correlation of zero and one respectively.14 

 
13 Subgroup analyses were conducted by program type, and native language (by whether home language is English 
and by whether home language is the program’s partner language). 
14 Specifically, assuming that the correlation of the sampling distributions for two different estimates equals zero, the 
standard error of the bias estimate can be computed as the following, where �̂�𝛿𝑒𝑒𝑒𝑒𝑖𝑖1 and �̂�𝛿𝑒𝑒𝑒𝑒𝑖𝑖2 are the two estimates: 

SEbias = �var�δ�est1� + var(δ�est2). Similarly, assuming the correlation of the sampling distributions for two 
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 The second test is a test of statistical equivalence within a given threshold, 𝛿𝛿𝐸𝐸 . The null 

hypothesis is that the absolute difference between the estimates is larger than this threshold: 

𝐻𝐻0: |𝛽𝛽𝐴𝐴 − 𝛽𝛽𝐵𝐵| ≥ 𝛿𝛿𝐸𝐸. This can also be stated as two one-sided tests: 𝐻𝐻01:𝛽𝛽𝐴𝐴 − 𝛽𝛽𝐵𝐵 ≥ 𝛿𝛿𝐸𝐸  and 

𝐻𝐻02:𝛽𝛽𝐴𝐴 − 𝛽𝛽𝐵𝐵 ≤ −𝛿𝛿𝐸𝐸. To reject the null hypothesis of non-equivalence, the null hypotheses of 

both one-tailed tests must be rejected. Following Steiner and Wong (2018), we assess statistical 

difference and statistical equivalence at a tolerance threshold of 0.1 s.d., and to align with the 

What Works Clearinghouse’s (2013) bias threshold for creating its attrition thresholds, we report 

correspondence at an equivalence threshold of 0.05 s.d. as well. 

 Steiner and Wong (2018) explain that the results of these two tests, combined, lead to one 

of four conclusions about the degree of correspondence between two estimates. To conclude 

statistical equivalence, both the difference and equivalence tests must suggest equivalence. To 

conclude statistical difference, both tests must suggest a difference. If both tests fail to reject the 

null hypotheses, perhaps due to low power, we conclude the tests are indeterminate. When both 

tests reject the null hypotheses (the equivalence tests indicates equivalence and the difference 

tests indicates a difference), perhaps due to high power, we conclude there is a trivial difference. 

6. RESULTS 

Inverse Probability Weighting 

Inverse probability weights were created using predicted probabilities of the probit model 

estimates in Table 2. Table 4 compares the reading results for three models: the benchmark ODE 

model, an unweighted (“naïve”) PPS model, and an IPW PPS model. The benchmark ITT effect 

 
different estimates equals one, the standard error of the bias estimate is the following: SEbias =

�var�δ�est1� + var�δ�est2� − 2�var�δ�est1�var(δ�est2). Alternatively, standard errors could be bootstrapped to 

account for dependencies in the samples, although in our case, using bootstrapped samples would arbitrarily impose 
a new set of attrition mechanisms on each sample would create more noise and uncertainty. 
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in the benchmark ODE sample was positive and significant in grade 5 (0.150 s.d.) and grade 8 

(0.232 s.d.).15 We also estimate significant and positive effects in these grades in the “naïve” 

PPS sample, while the IPW PPS models also estimate positive effects in grade 6 as well. The 

bias columns indicate the difference between the PPS estimates (naïve or IPW) and the ODE 

benchmark estimate. To indicate statistically difference and/or equivalence, we present the 

results of the Steiner and Wong (2018) correspondence test (equivalence, difference, trivial 

difference, or indeterminate) under three different assumptions about the correlation between the 

sampling distribution of the two estimates (corr. = 0, 0.5, 0.75, or 1). These correlations are also 

used to calculate the standard error of the bias, in parentheses in the same columns. For 

equivalence testing, we report results for equivalence thresholds of 0.05 and 0.1 s.d. of bias. The 

results of the difference test are the same across these threshold increases, all else equal, it is 

more likely that we will conclude equivalence (absolute value of the bias less than that 

threshold). 

When the correlation is assumed to be either 0 or 0.5 (unlikely assumptions given the 

strong overlap between the PPS and ODE samples) all findings are indeterminate. At an assumed 

correlation of 0.75, and an equivalence threshold of 0.5, all findings are indeterminate as well. At 

an assumed correlation of 0.75, and with a higher threshold for equivalence, 0.1 s.d., both the 

naïve PPS and the IPW PPS models find “equivalence” in 3 out of 6 cases. At a correlation of 1, 

the estimated standard error of the bias is reduced enough that we reject the nulls of equivalence 

and difference in many cases, leading to many conclusions of “trivial differences,” however, in 

this case, saying a difference within 0.1 s.d. is perhaps misleading and merely a function of a 

larger threshold. Perhaps most importantly, when looking at the grade levels for which we 

 
15 For further discussion of these results, see Authors (2017). 



22 
 

estimate statistically significant effects, the results were generally trivially different in grade 5, 

but the IPW PPS model was biased significantly upwards in grade 8, and would lead to a false 

positive in grade 6. Overall, these findings indicate that the IPW is not performing better than 

simply using the “naïve,” unweighted estimates (not producing more equivalence), and if 

anything, is introducing more bias (more differences). 

[TABLE 4 ABOUT HERE] 

Lee (2009) Bounds 

Next, we discuss the results of the Lee (2009) bounding method. In Table 5, we report the 

estimated proportion of lottery winners to be trimmed following equation (2), representing the 

percent of lottery winners induced to enroll in PPS by winning the lottery and the proportion of 

observations trimmed from the upper and lower tails of the test score distribution to create the 

Lee (2009) bounds. Depending on grade level, the proportions ranged from 15.7% to 21.9%. 

These results16 are uninformative, because even with tightening, all the estimated bounds 

included zero. The covariates used to tighten the bounds were those that predicted enrollment 

into PPS (Ksoll et al., 2014), yet their predictive value is quite weak, as indicated in Table 2. 

Table 5 provides the bounds for the reading impacts, tightened using FRPL-eligibility and first 

language not English-status, all of which include zero.17 A key issue here, is that we lack 

variables that highly predict enrollment in a district (Ksoll et al., 2014).  

[TABLE 5 ABOUT HERE] 

Angrist, Bettinger, & Kremer (2006) Non-Parametric Bounds 

We next study the performance of Angrist et al.’s (2006) non-parametric bounding 

 
16 Lee bounds were estimated using the command “leebounds” in Stata (Tauchmann, 2014). 
17 We attempted to tighten bounds using every available combination of variables that were significantly predicting 
enrollment status as indicated in Table 2, but in no cases did the bounds exclude zero. 
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strategy. As mentioned previously, we do not have strong evidence that one of the key 

assumptions is met – that district leavers come from one side of the distribution – either the 

highest performing or the lowest performing. The third column in Table 6 reports the amount of 

bias in the naive PPS model. Under the assumption that those leaving the district, particularly 

from the control group, are relatively advantaged and potentially have higher test scores, the 

naïve PPS ITT estimates should be biased downward. While four out of six of the “naïve” PPS 

estimates in Table 6 were biased downward, two were biased upward, suggesting – as we 

expected earlier - that the assumption that those who leave the district are from the top end of the 

potential test score distribution is not fully supported.18 

Table 6 also presents results using Angrist et al.’s (2006) non-parametric bounds, despite 

lacking a clear indication that the necessary assumptions have been met. This method produced 

bounds that contained the point estimate from the ODE benchmark sample in only two cases 

(grade 7 and grade 8 using θ = 0.9). The 95% confidence intervals (CIs) of the bounds, however, 

overlap with the 95% CIs of the benchmark ODE point estimate in all cases, so we cannot 

conclude that the bounds do not include the benchmark estimate. In some cases, the upper 

bounds were less than the corresponding lower bounds (same percentile and grade comparison), 

continuing to raise concerns that the assumptions required for this method are not met. 

[TABLE 6 ABOUT HERE] 

 
18 Note that the reverse assumption, that the students leaving the district are those in the bottom tail of the test score 
distribution, is also not fully supported by our data. The estimates in Table 2 do indicate that students with certain 
disadvantages, in some grades, leave PPS with higher probability. In this case, the estimated ITT unweighted PPS 
effects would be downward biased and this seems to be the case for one out of two of the significant estimated 
effects. To test whether this could be the case, we conducted the same non-parametric bounding approach under the  
assumption that those who leave the district are actually the lowest performers. We find that the results do not 
improve, and in some cases there are large (0.3 standard deviation) biases. 
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7. SIMULATION ANALYSIS OF PERFORMANCE OF ANGRIST ET AL. (2006) 

BOUNDING APPROACHES 

As discussed previously, there is evidence that the required assumptions for the Angrist et 

al. (2006) bounding methods are not satisfied, so we wonder to what extent this harms 

performance. These types of methods are often used without a full assessment of whether the 

assumptions are met, so we use the simulation analysis to model the performance of these 

methods when such assumptions are and are not fully met. 

To better understand the practicality and performance of these correction methods in 

various contexts, we simulated artificial assignment of treatment status and differential attrition 

under various assumptions. We created a simulation sample of 17,249 PPS students who were 

DLI non-applicants and who were present in PPS in third grade to ensure we had outcome data 

in this year and focused on estimating effects in grade three, where all attrition can be controlled 

by our simulation exercise. We assigned treatment status randomly (8,625 treatment, 8,624 

control) such that the expected average treatment effect (ATE) is zero. Random assignment was 

conducted 100 times to create 100 samples, each with a different treatment and control group. 

Next, in each of these 100 datasets, we created artificial attrition of 5% and 10% of control units 

under various scenarios ranging from completely random attrition to attrition based solely on 

third grade test scores. The assumed attrition rate for treatment units is 0%, ensuring differential 

attrition rates of 5% and 10%. 

In the case of completely random attrition, test scores are uncorrelated with predictors of 

attrition, and no selection bias should exist. Theoretically, the Angrist et al. (2006) non-

parametric correction method works best under the case of attrition based solely on potential test 

scores. Under attrition that is a mix of test scores and random error, there is theoretically some 
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point at which too much random attrition causes the method to fail. Yet, if attrition is essentially 

random, it is a non-issue for bias. This simulation analysis seeks to find the situations under 

which Angrist et al. (2006) bounding methods are able to bound the true effect of zero. 

We present results for the Angrist et al. (2006) non-parametric methods under 14 

scenarios. For attrition amounts of 5 and 10 percent, we present results following seven types of 

control group attrition: attrition based solely on test scores, attrition that is completely random, 

and five cases of attrition driven by a mix of test scores and random error in the following ratios: 

25/75, 40/60, 50/50, 60/40, and 75/25. To simulate attrition based on different ratios of test 

score-based and random attrition, we used z-scores (test scores normalized to a mean of zero and 

standard deviation of one), and a random variable with the standard normal distribution. We 

calculated the propensity to not be observed as the sum of these two variables in different 

proportions and use these to select the proportion that are unobserved. We replicated this 

exercise in 100 samples and assess how often we are able to estimate the expected ATE of zero. 

Results of the non-parametric Angrist et al. (2006) approach under 5 percent simulated 

attrition are in Figure 3. The points represent the proportion of the bounds that included the true 

simulated ATE of zero for each combination of attrition type (test scores, random, or a mix), and 

model (naïve OLS or estimates of bounds at various quantiles). Recall, these quantiles are used 

to identify the upper and lower bounds, as described in section 3.1. Overall, this method works 

well, as long as attrition is primarily based on test scores. 

[FIGURE 3 ABOUT HERE] 

When attrition is driven entirely by test scores (the 5 percent of control group students 

with the highest test scores are not observed), the non-parametric bounds at various quantiles 

included the expected ATE of zero in the vast majority of cases (at least 97 out of 100). As long 
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as attrition is based at least 60 percent or more on test scores, at least 96 percent of the bounds 

created at the 90th percentile or below included the expected ATE of zero. “Naïve” OLS 

continues to work well when attrition is completely random (there is no bias to correct), but not 

if attrition is non-random. When attrition is completely random, the range of estimates using the 

non-parametric approach generally does include the expected ATE of zero, indicating, as 

expected, that this method does not perform better than OLS under completely random attrition. 

Next, Figure 4 graphs the results using the non-parametric method (Angrist et al., 2006) 

to correct for simulated attrition of 10% of the control group in Figure 4. The results are similar 

to those in Figure 3, except when attrition is higher, the method appears to be more sensitive to 

the degree to which attrition is based on test scores.  

[FIGURE 4 ABOUT HERE] 

Overall, the results of the simulation analysis indicated that, when the assumptions of the 

Angrist et al. (2006) correction methods are met and attrition is primarily based on test scores, 

these methods are generally successful at correcting differential attrition. However, when 

attrition is random, we would have been better off using OLS without bounding. This supports 

our conclusion that the poor performance of these correction methods in the non-simulated data 

may be due to the underlying assumptions not being fully met.  

8. CONCLUSION 

 This study provided a unique opportunity to test and compare the performance of various 

correction methods for differential attrition, a common practical issue in RCTs, against a 

benchmark estimate. The use of an augmented dataset enabled this study, but is often not 

practically attainable for researchers conducting lottery-based evaluations or RCTs more 

generally. One clear implication from this work is that similarly designed studies should try to 



27 
 

access an augmented dataset whenever possible. Using the observed (non-simulated) data, where 

the sources of attrition are largely unknown, the “naïve” PPS results were similar to the results 

from the augmented state-provided ODE dataset, where differential attrition was limited and 

which we use as the benchmark data source. Despite the apparent similarity between the “naïve” 

PPS and benchmark ODE results – which of course, would be unknowable without the 

benchmark dataset – we tested the performance of various correction methods against this 

benchmark, and concluded that the Angrist et al. (2006) non-parametric bounds and the Lee 

(2009) bounds had little success in a situation such as ours, particularly when it is difficult to 

directly test the extent to which underlying assumptions of correction methods are supported.  

In the non-simulated data, IPW performed worse than unweighted PPS models. For five 

out of six estimates, the IPW results were further from the ODE benchmark results than the 

unweighted PPS results. Indeed, despite differential attrition rates that indicate strong potential 

for selection bias, it turned out that the “naïve” results may not have been extremely biased.  

Perhaps this is not surprising, as IPW relies on propensity score models that accurately 

model the selection process. Luckily, in our case, we have an augmented dataset with which to 

compare the results, but in practice, many researchers may rely on IPW without enough 

observable characteristics to be confident that selection is appropriately modelled. Using the 

non-simulated data, the Angrist et al. (2006) non-parametric bounds contained the ODE 

benchmark point estimate in only two out of twelve cases, and in several cases, the upper bounds 

were lower than the corresponding lower bounds, suggesting issues of misspecification. 

The bias and noise from using correction methods without evidence to support the 

underlying assumptions could lead to an incorrect conclusion about program effects. Thus, the 

main result of the non-simulation analysis is that using these various correction methods would 
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have not been the right choice in our case, and that – while researchers should carefully consider 

whether the assumptions are supported – this is often not possible in practice. 

For two key reasons, the non-simulated results might not generalize to most program 

evaluations. First, despite differential attrition in the PPS sample, we had relatively balanced 

treatment and comparison groups in the “naïve” PPS sample (see Table 3), so there was not 

much bias to correct for. A second unique aspect is the lack of baseline test scores for applicants, 

who were applying prior to pre-K or kindergarten. Lack of important baseline covariates might 

make it harder to correctly model selection or to assess whether the assumptions for various 

methods are met. Thus, the results might be most relevant for evaluations that use administrative 

data to conduct ad-hoc analyses and those without a robust set of baseline covariates. 

Given concerns of generalizability of these non-simulation results, the results of our 

simulation analysis have broader implications for researchers dealing with differential attrition. 

Due to uncertainty about whether the underlying assumptions were supported, we conducted a 

simulation analysis to test the performance of the Angrist et al. (2006) non-parametric methods 

under various types of attrition. Overall, we find these methods work quite well if the attrition is 

primarily based on student test scores. Unfortunately, it is often difficult to tell in practice to 

what extent this may be true. 

We recommend researchers consider and test whenever possible the assumptions attrition 

correction methods area based on. The problem, however, is that researchers are generally not 

able to fully observe and model what drives attrition, particularly in cases where baseline 

outcome measures are unavailable. Thus, our results provide an important word of caution for 

researchers and for consumers of research using these types of methods. 
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TABLE 1. Randomized Sample by Lottery-Assigned Status and Share Observed in 
Benchmark and PPS Reading Analysis Samples. 

Valid Lottery Applicants 
Randomized by Cohort 

 
Size of Randomized 
Sample by Highest 

Observable Grade (if Zero 
Attrition) 

 Fraction 
Observed in 
Benchmark 

ODE Analysis 
Sample 

 Fraction 
Observed in 

PPS 
Analysis 
Sample 

Fall Term Won Lost  Grade Won    Lost  Won Lost  Won Lost 
2004       63      133             
2005       74      111   8        137       244   0.67** 0.68**  0.53 0.42 
2006     103      148   7        240       392   0.63** 0.65**  0.52 0.44 
2007     125      153   6        365       545   0.63* 0.60*  0.56 0.44 
2008     166      171   5        531       716   0.70* 0.66*  0.65 0.50 
2009     148      168   4        679       884   0.74* 0.68*  0.68 0.52 
2010     185      198   3        864    1,082   0.75* 0.69*  0.71 0.55 
Total     864    1,082                  

**Meets What Works Clearinghouse Version 3.0 Conservative Attrition Thresholds (WWC, 
2014) 
*Meets What Works Clearinghouse Version 3.0 Liberal Attrition Thresholds (WWC, 2014) 
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TABLE 2. Propensity to Enroll in PPS (Full Sample); Dependent Variable: Has Reading Test Score and Enrolls in 
Portland (Marginal Effects) 

 
Note. There were no test score outcomes in kindergarten, so the kindergarten outcome is simply enrollment in PPS. Models predicting 
observations in later years include lagged test scores as additional explanatory variables; results available by request. Some control 
group units were dropped from the kindergarten outcome model due to special needs status perfectly predicting enrollment in the 
district in kindergarten. 
***p<0.01, **p<0.05, *p<0.1.

K 3rd K 3rd K 3rd K 3rd
Won Lottery 0.0685 *** 0.134 ***

(0.0160) (0.0220)
Female -0.0125 0.0090 0.0050 0.0139 -0.0328 0.0032 0.0378 0.0107

(0.0161) (0.0225) (0.0203) (0.0293) (0.0258) (0.0325) (0.0328) (0.0438)
Asian -0.0443 0.0213 -0.0061 0.00581 -0.109 * 0.0214 0.1030 -0.0156

(0.0311) (0.0372) (0.0326) (0.0453) (0.0581) (0.0593) (0.0666) (0.0746)
Black -0.0149 -0.1010 * -0.0379 -0.248 *** 0.0122 0.0017 -0.0501 -0.2497 **

(0.0424) (0.0569) (0.0612) (0.0919) (0.0628) (0.0732) (0.0877) (0.1175)
Hispanic 0.00798 -0.00529 0.0243 -0.0553 -0.0054 0.0309 0.0297 -0.0862

(0.0268) (0.0378) (0.0324) (0.0561) (0.0432) (0.0518) (0.0540) (0.0764)
Other Race -0.0427 -0.0490 -0.0047 -0.0197 -0.0805 -0.0645 0.0758 0.0448

(0.0370) (0.0499) (0.0444) (0.0704) (0.0582) (0.0675) (0.0732) (0.0975)
Missing Race -0.420 *** -0.457 *** -0.432 *** -0.580 *** -0.438 *** -0.401 *** 0.0060 -0.1790

(0.0862) (0.0803) (0.162) (0.136) (0.0995) (0.0942) (0.1901) (0.1654)
FRPL 0.0497 ** 0.0395 0.0132 0.0643 * 0.0957 *** 0.0234 -0.0825 ** 0.0409

(0.0203) (0.0305) (0.0279) (0.0381) (0.0310) (0.0451) (0.0417) (0.0590)
Special Needs (t=0) 0.1100 *** 0.0145 0.0688 *** -0.0745 0.149 ** N/A -0.2235 **

(0.0177) (0.0549) (0.0244) (0.0729) (0.0753) N/A (0.1048)
First Language Not English -0.0892 ** -0.153 *** -0.0839 * -0.139 ** -0.0954 * -0.151 ** 0.0115 0.0120

(0.0364) (0.0448) (0.0488) (0.0603) (0.0570) (0.0639) (0.0750) (0.0879)

Observations 1,625 1,581 752 721 845 860
     

Full Sample Treatment Group Only Control Group Only Diff. in Coefficients (T-C)
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TABLE 3. Covariate balance 

  
Note. The “strata-adj” differences and p-values reflect the differences/balance within lottery strata. 

Panel A: Kindergarten

Won 
Slot

Not 
Placed

Strata 
adj. p-
value

N 752 873
Proportion 0.463 0.537
Female 0.508 0.546 -0.038 -0.041 0.15
Asian 0.178 0.115 0.064 0.008 0.61
Black 0.052 0.060 -0.008 0.004 0.77
Hispanic 0.177 0.164 0.013 0.008 0.65
White 0.517 0.559 -0.042 0.028 0.25
Other Race 0.063 0.073 -0.011 ** -0.036 ** 0.01
FRPL 0.273 0.250 0.023 -0.009 0.63
Special Needs in K 0.052 0.032 0.020 0.012 0.29
ELL in K 0.153 0.105 0.048 -0.002 0.91
First Language Not English 0.206 0.157 0.049 -0.013 0.42
Panel B: Grade 3

Won 
Slot

Not 
Placed

Strata 
adj. p-
value

Won 
Slot

Not 
Placed

Strata 
adj. p-
value

Won 
Slot

Not 
Placed

Strata 
adj. p-
value

N 642 745 583 581 583 581
Proportion 0.463 0.537 0.501 0.499 0.501 0.499
Female 0.511 0.566 -0.056 * -0.059 * 0.06 0.513 0.552 -0.040 -0.040 0.23 0.504 0.552 -0.048 -0.036 0.29
Asian 0.192 0.121 0.071 0.011 0.53 0.185 0.110 0.075 0.006 0.76 0.182 0.115 0.067 0.004 0.84
Black 0.051 0.062 -0.010 -0.001 0.95 0.045 0.064 -0.019 -0.013 0.36 0.055 0.060 -0.006 -0.003 0.86
Hispanic 0.174 0.172 0.003 -0.004 0.84 0.170 0.165 0.005 0.004 0.84 0.186 0.163 0.023 0.015 0.45
White 0.519 0.553 -0.034 0.037 0.17 0.539 0.585 -0.046 0.035 0.22 0.509 0.563 -0.054 0.028 0.31
Other Race 0.058 0.071 -0.014 ** -0.034 ** 0.02 0.057 0.064 -0.007 ** -0.030 ** 0.06 0.055 0.068 -0.013 ** -0.037 ** 0.04
FRPL 0.293 0.262 0.031 -0.008 0.71 0.271 0.250 0.021 -0.016 0.48 0.285 0.253 0.032 -0.012 0.64
Special Needs in K 0.044 0.035 0.009 -0.0001 0.99 0.046 0.040 0.007 -0.001 0.92 0.053 0.033 0.021 0.010 0.44
ELL in K 0.160 0.115 0.045 -0.011 0.48 0.142 0.100 0.042 -0.008 0.63 0.157 0.111 0.046 -0.009 0.61
First Language Not English 0.215 0.161 0.054 -0.012 0.49 0.194 0.139 0.055 -0.007 0.70 0.217 0.161 0.056 -0.013 0.52

Benchmark ODE Sample
Binding Lottery Applicants Only

Difference 
(Unadj)

Strata adj. 
Difference

Benchmark ODE Sample Inverse Probability Weighted Sample
Binding Lottery Applicants with ODE-Observed 

3rd Grade Reading Score
Binding Lottery Applicants with PPS-Observed 3rd 

Grade Reading Score
Binding Lottery Applicants with PPS-Observed 3rd 

Grade Reading Score

Difference 
(Unadj)

Strata adj. 
Difference

Difference 
(Unadj)

Strata adj. 
Difference

Difference 
(Unadj)

Strata adj. 
Difference

Initial PPS Sample - Unweighted



38 
 

TABLE 4. Comparison of Reading Results: Inverse Probability Weighting.     

  
Note. Robust standard errors in parentheses. All models include year fixed effects, lottery strata fixed effects, and 
demographic controls.. IPW = Inverse Probability Weighted. The standard error estimates included in the columns 
with the results of the difference and equivalence tests (Steiner & Wong, 2018), are the standard errors of the 
estimated bias, assuming correlations between the effect estimates of 0, 0.5, and 1. Grade 9 results hidden from table 
due to small sample size (<50 observations). ODE = Oregon Department of Education. PPS = Portland Public 
Schools. Naïve PPS models are calculated based on equation (1), among only the PPS sample, without inverse 
probability weighting.  
***p<0.01, **p<0.05, *p<0.1. 

Corr = 0 Corr = 0.5
  

0.75 Corr = 1 Corr = 0 Corr = 0.5
  

0.75 Corr = 1
Grade 3 ITT 0.059 0.077 0.019 Indet. Indet. Indet. Trivial Diff. Indet. Indet. Equivalence Trivial Diff.

(0.051) (0.055) (0.075) (0.053) (0.038) (0.004) (0.075) (0.053) (0.038) (0.004)
Grade 4 ITT 0.078 0.065 -0.013 Indet. Indet. Indet. Trivial Diff. Indet. Indet. Equivalence Trivial Diff.

(0.056) (0.062) (0.084) (0.059) (0.042) (0.005) (0.084) (0.059) (0.042) (0.005)
Grade 5 ITT 0.150 ** 0.123 * -0.027 Indet. Indet. Indet. Trivial Diff. Indet. Indet. Indet. Trivial Diff.

(0.060) (0.066) (0.089) (0.063) (0.045) (0.006) (0.089) (0.063) (0.045) (0.006)
Grade 6 ITT 0.120 0.119 -0.001 Indet. Indet. Indet. Equivalence Indet. Indet. Equivalence Equivalence

(0.075) (0.082) (0.111) (0.078) (0.056) (0.007) (0.111) (0.078) (0.056) (0.007)
Grade 7 ITT 0.117 0.091 -0.026 Indet. Indet. Indet. Trivial Diff. Indet. Indet. Indet. Trivial Diff.

(0.081) (0.094) (0.124) (0.088) (0.063) (0.013) (0.124) (0.088) (0.063) (0.013)
Grade 8 ITT 0.232 ** 0.313 *** 0.081 Indet. Indet. Indet. Difference Indet. Indet. Indet. Difference

(0.101) (0.118) (0.155) (0.110) (0.079) (0.017) (0.155) (0.110) (0.079) (0.017)
Obs. 4,594 3,705
Students 1,447 1,208
Adj. R-squared 0.3112 0.3098

Corr = 0 Corr = 0.5
  

0.75 Corr = 1 Corr = 0 Corr = 0.5
  

0.75 Corr = 1
Grade 3 ITT 0.059 0.089 0.030 Indet. Indet. Indet. Trivial Diff. Indet. Indet. Equivalence Trivial Diff.

(0.051) (0.055) (0.075) (0.053) (0.037) (0.004) (0.075) (0.053) (0.037) (0.004)
Grade 4 ITT 0.078 0.097 0.019 Indet. Indet. Indet. Trivial Diff. Indet. Indet. Equivalence Trivial Diff.

(0.056) (0.062) (0.084) (0.059) (0.042) (0.005) (0.084) (0.059) (0.042) (0.005)
Grade 5 ITT 0.150 ** 0.126 * -0.024 Indet. Indet. Indet. Trivial Diff. Indet. Indet. Equivalence Trivial Diff.

(0.060) (0.065) (0.089) (0.063) (0.045) (0.005) (0.089) (0.063) (0.045) (0.005)
Grade 6 ITT 0.120 0.177 ** 0.057 Indet. Indet. Indet. Difference Indet. Indet. Indet. Trivial Diff.

(0.075) (0.083) (0.112) (0.079) (0.056) (0.008) (0.112) (0.079) (0.056) (0.008)
Grade 7 ITT 0.117 0.147 0.030 Indet. Indet. Indet. Difference Indet. Indet. Indet. Trivial Diff.

(0.081) (0.094) (0.124) (0.088) (0.063) (0.013) (0.124) (0.088) (0.063) (0.013)
Grade 8 ITT 0.232 ** 0.353 *** 0.121 Indet. Indet. Indet. Difference Indet. Indet. Indet. Difference

(0.101) (0.116) (0.154) (0.109) (0.078) (0.015) (0.154) (0.109) (0.078) (0.015)
Grade 9 ITT 0.0917 -0.286 -0.378

(0.292) (0.238)
Obs. 4,594 3,660
Students 1,447 1,204
Adj. R-squared 0.3112 0.3198

Benchmark 
ODE 

Sample

Steiner & Wong (2018) Correspondence at the 95% Confidence Level; (Standard Errors of 
Estimated Bias in Parentheses)

Assuming Equivalence Threshold of 0.05 s.d.
IPW PPS

Bias in 
IPW 
PPS

Assuming Equivalence Threshold of 0.1 s.d.

Assuming Equivalence Threshold of 0.05 s.d.
Benchmark 

ODE 
Sample Naïve PPS

Bias in 
Naïve 
PPS

Assuming Equivalence Threshold of 0.1 s.d.

Steiner & Wong (2018) Correspondence at the 95% Confidence Level; (Standard Errors of 
Estimated Bias in Parentheses)
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TABLE 5. Lee Bounds Analysis: Proportion to be Trimmed, Upper and Lower 
Bounds on Reading Treatment Effects. 

  
Note. Covariates used for tightening include FRPL-eligibility and first language not English. 

Proportion to 
be Trimmed

Lower 
Bound

Upper 
Bound

Grade 3 16.5% -0.26 0.30
Grade 4 17.2% -0.35 0.24
Grade 5 20.1% -0.30 0.34
Grade 6 15.7% -0.27 0.22
Grade 7 19.2% -0.35 0.17
Grade 8 21.9% -0.14 0.50
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TABLE 6. Comparison of Reading Results: Non-Parametric Bounds (Angrist et al., 2006). 

 
Note. Robust standard errors in parentheses. Other covariates include year indicators, binding lottery strata fixed effects, and demographic controls (gender, race, 
special needs in kindergarten, first language not English in kindergarten, and FRPL in kindergarten). Grade 9 results hidden from table due to small sample size 
(<50 observations). Whether or not confidence intervals overlap is based on the 95% CI of the benchmark ODE sample, and the 95% confidence intervals of the 
upper and lower bounds. Naïve PPS models are calculated based on equation (1), among only the PPS sample, without bounding.  
*** p<0.01, ** p<0.05, * p<0.1.

Grade 3 ITT 0.0585 0.0774 0.019 0.0317 0.0499 No Yes 0.0067 0.0373 No Yes
(0.051) (0.055) (0.049) (0.050) (0.048) (0.048)

Grade 4 ITT 0.0779 0.0648 -0.013 -0.0173 0.0248 No Yes -0.0405 -0.0203 No Yes
(0.056) (0.062) (0.055) (0.056) (0.054) (0.054)

Grade 5 ITT 0.150 ** 0.123 * -0.027 0.0880 0.100 No Yes 0.0616 0.0798 No Yes
(0.060) (0.066) (0.060) (0.061) (0.059) (0.059)

Grade 6 ITT 0.120 0.119 -0.001 0.0850 0.0780 No Yes 0.0618 0.0430 No Yes
(0.075) (0.082) (0.074) (0.074) (0.072) (0.071)

Grade 7 ITT 0.117 0.0909 -0.026 0.144 0.123 No Yes 0.133 0.108 Yes Yes
(0.081) (0.094) (0.091) (0.091) (0.089) (0.088)

Grade 8 ITT 0.232 ** 0.313 *** 0.081 0.310 *** 0.344 *** No Yes 0.228 * 0.318 *** Yes Yes
(0.101) (0.118) (0.117) (0.117) (0.119) (0.117)

Observations 4,594 3,705 3,510 3,470 3,266 3,283
Students 1,447 1,208 1,187 1,161 1,124 1,128
Adj. R-Squared 0.311 0.310 0.315 0.316 0.304 0.305

    

90% Upper 
Bound

Confidence 
Intervals 
Overlap?

Confidence 
Intervals 
Overlap?

Bounds Using θ = .90Bounds Using θ = .95
Benchmark 

ODE 
Sample Naive PPS

Bias in 
Naive 
PPS

95% Lower 
Bound

Benchmark 
Estimate 
within 

90% Lower 
Bound

Benchmark 
Estimate 
within 

95% Upper 
Bound
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FIGURE 1. Distribution of third grade reading scores, all control group students observed in 
augmented state-level dataset, including PPS-enrollees and non-enrollees 
  

0
.1

.2
.3

.4
.5

D
en

si
ty

-4 -2 0 2 4
3rd Grade Reading Std. Test Score



42 
 

 
FIGURE 2. Distribution of third grade reading scores, control group students who did not enroll 
in PPS district 
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FIGURE 3. Non-parametric bounding results at various percentiles, under artificially simulated 
attrition of 5% (grade 3 reading). Tabular summaries of these results are available by request. 
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FIGURE 4.  Non-parametric bounding results at various percentiles, under artificially simulated 
attrition of 10% (grade 3 reading). Tabular summaries of these results are available by request. 
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